login
A013961
a(n) = sigma_13(n), the sum of the 13th powers of the divisors of n.
15
1, 8193, 1594324, 67117057, 1220703126, 13062296532, 96889010408, 549822930945, 2541867422653, 10001220711318, 34522712143932, 107006334784468, 302875106592254, 793811662272744, 1946196290656824, 4504149450301441, 9904578032905938, 20825519793796029, 42052983462257060
OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequencesA017665-A017712also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequencesA000203(k=1),A001157-A001160(k=2,3,4,5),A013954-A013972for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja ), Apr 05 2001
FORMULA
G.f.: Sum_{k>=1} k^13*x^k/(1-x^k). -Benoit Cloitre,Apr 21 2003
Dirichlet g.f.: zeta(s-13)*zeta(s). -Ilya Gutkovskiy,Sep 10 2016
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24. -Simon Plouffe,Mar 01 2021
FromAmiram Eldar,Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(13*e+13)-1)/(p^13-1).
Sum_{k=1..n} a(k) = zeta(14) * n^14 / 14 + O(n^15). (End)
MAPLE
A013961:= proc(n)
numtheory[sigma][13](n);
end proc: #R. J. Mathar,Sep 21 2017
MATHEMATICA
DivisorSigma[13, Range[30]] (*Vincenzo Librandi,Sep 10 2016 *)
PROG
(Sage) [sigma(n, 13)for n in range(1, 16)] #Zerinvary Lajos,Jun 04 2009
(Magma) [DivisorSigma(13, n): n in [1..20]]; //Vincenzo Librandi,Sep 10 2016
(PARI) my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^13*q^n/(1-q^n))) \\Altug Alkan,Sep 10 2016
(PARI) a(n) = sigma(n, 13); \\Michel Marcus,Sep 10 2016
KEYWORD
nonn,mult,easy
STATUS
approved