login
A013969
a(n) = sigma_21(n), the sum of the 21st powers of the divisors of n.
11
1, 2097153, 10460353204, 4398048608257, 476837158203126, 21936961102828212, 558545864083284008, 9223376434903384065, 109418989141972712413, 1000000476837160300278, 7400249944258160101212, 46005141850728850805428, 247064529073450392704414, 1171356134499851307229224
OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequencesA017665-A017712also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequencesA000203(k=1),A001157-A001160(k=2,3,4,5),A013954-A013972for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja ), Apr 05 2001
FORMULA
G.f.: Sum_{k>=1} k^21*x^k/(1-x^k). -Benoit Cloitre,Apr 21 2003
Sum_{n>=1} a(n)/exp(2*Pi*n) = 77683/552 = Bernoulli(22)/44. -Vaclav Kotesovec,May 07 2023
FromAmiram Eldar,Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(21*e+21)-1)/(p^21-1).
Dirichlet g.f.: zeta(s)*zeta(s-21).
Sum_{k=1..n} a(k) = zeta(22) * n^22 / 22 + O(n^23). (End)
MATHEMATICA
Table[DivisorSigma[21, n], {n, 50}] (*Vladimir Joseph Stephan Orlovsky,Mar 11 2009 *)
PROG
(Sage) [sigma(n, 21)for n in range(1, 13)] #Zerinvary Lajos,Jun 04 2009
(PARI) vector(50, n, sigma(n, 21)) \\G. C. Greubel,Nov 03 2018
(Magma) [DivisorSigma(21, n): n in [1..50]]; //G. C. Greubel,Nov 03 2018
KEYWORD
nonn,easy,mult
STATUS
approved