login
A015613
a(n) = Sum_{i=1..n} phi(i) * (ceiling(n/i) - floor(n/i)).
1
0, 0, 1, 2, 5, 6, 11, 14, 19, 22, 31, 34, 45, 50, 57, 64, 79, 84, 101, 108, 119, 128, 149, 156, 175, 186, 203, 214, 241, 248, 277, 292, 311, 326, 349, 360, 395, 412, 435, 450, 489, 500, 541, 560, 583, 604, 649, 664, 705, 724, 755, 778, 829, 846, 885, 908, 943
OFFSET
1,4
COMMENTS
a(n) is half the number of fractions reduced to lowest terms with numerator and denominator in {2, 3,..., n}. a(5) = 5 = (1/2) * |{2/3, 2/5, 3/2, 3/4, 3/5, 4/3, 4/5, 5/2, 5/3, 5/4}|. -Stefano Spezia,Aug 11 2019
LINKS
FORMULA
a(n) = sum of phi(e) where e ranges over all nondivisors of n that are between 1 and n. -Joseph L. Pe,Oct 24 2002
a(n) =A002088(n) - n.
a(n) =A091369(n) -A000217(n). -Alois P. Heinz,Aug 11 2019
MAPLE
a:= proc(n) option remember; `if`(n=0, 0,
numtheory[phi](n)-1+a(n-1))
end:
seq(a(n), n=1..100); #Alois P. Heinz,Aug 11 2019
MATHEMATICA
f[n_]:= Module[{s, i}, s = 0; For[i = 1, i < n, i++, If[Mod[n, i]!= 0, s = s + EulerPhi[i]]]; s]; Table[f[i], {i, 1, 100}]
PROG
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
defA015613(n): # based on second formula inA018805
if n == 0:
return 0
c, j = 0, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*(2*(A015613(k1)+k1)-1)
j, k1 = j2, n//j2
return (n*(n-3)-c+j)//2 #Chai Wah Wu,Mar 25 2021
KEYWORD
nonn
AUTHOR
Joseph L. Pe,Oct 24 2002
EXTENSIONS
Edited byVladeta Jovovic,Mar 23 2003
STATUS
approved