OFFSET
1,2
COMMENTS
The calculation of Brun's constant is "based on heuristic considerations about the distribution of twin primes" (Ribenboim, 1989).
Another constant related to the twin primes is the twin primes constant C_2 (sometimes also denoted PI_2)A005597defined in connection with the Hardy-Littlewood conjecture concerning the distribution pi_2(x) of the twin primes.
Comment fromHans Havermann,Aug 06 2018: "I don't think the last three (or possibly even four) OEIS terms [he is referring to the sequence at that date - it has changed since then] are necessarily warranted. P. Sebah (see link below) (http://numbers putation.free.fr/Constants/Primes/twin.html) gives 1.902160583104... as the value for primes to 10^16 followed by a suggestion that the (final) value 'should be around 1.902160583...'" - added byN. J. A. Sloane,Aug 06 2018
REFERENCES
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 14.
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 133-135.
P. Ribenboim, The Book of Prime Number Records, 2nd. ed., Springer-Verlag, New York, 1989, p. 201.
LINKS
V. Brun, La série 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 + 1/41 + 1/43 + 1/59 + 1/61 +... où les dénominateurs sont "nombres premiers jumeaux" est convergente ou finie, Bull Sci. Math. 43 (1919),100-104and124-128.
C. K. Caldwell, The Prime Glossary,Brun's constant
Sebastian M. Cioabă and Werner Linde,A Bridge to Advanced Mathematics: from Natural to Complex Numbers,Amer. Math. Soc. (2023) Vol. 58, see page 334.
Steven R. Finch,Brun's Constant[Broken link]
Steven R. Finch,Brun's Constant[From the Wayback machine]
Thomas R. Nicely,Enumeration to 10^14 of the twin primes and Brun's constant,Virginia Journal of Science, 46:3 (Fall, 1995), 195-204.
Thomas R. Nicely,Enumeration to 10^14 of the twin primes and Brun's constant[Local copy, pdf only]
Thomas R. Nicely,Prime Constellations Research Project
P. Sebah,Numbers, constants and computation
D. Shanks and J. W. Wrench,Brun's constant,Math. Comp. 28 (1974) 293-299; 28 (1974) 1183; Math. Rev. 50 #4510.
H. Tronnolone,A tale of two primes,COLAUMS Space, #3, 2013.
Wikipedia,Brun's constant
FORMULA
Equals Sum_{n>=1} 1/A077800(n).
FromDimitris Valianatos,Dec 21 2013: (Start)
(1/5) + Sum_{n>=1, excluding twin primes 3,5,7,11,13,...} mu(n)/n =
(1/5) + 1 - 1/2 + 1/6 + 1/10 + 1/14 + 1/15 + 1/21 + 1/22 - 1/23 + 1/26 - 1/30 + 1/33 + 1/34 + 1/35 - 1/37 + 1/38 + 1/39 - 1/42... = 1.902160583... (End)
EXAMPLE
(1/3 + 1/5) + (1/5 + 1/7) + (1/11 + 1/13) +... = 1.902160583209 +- 0.000000000781 [Nicely]
CROSSREFS
KEYWORD
AUTHOR
Robert G. Wilson v,Sep 08 2000
EXTENSIONS
Corrected byN. J. A. Sloane,Nov 16 2001
More terms computed by Pascal Sebah (pascal_sebah(AT)ds-fr ), Jul 15 2001
Further terms computed by Pascal Sebah (psebah(AT)yahoo.fr), Aug 22 2002
Commented and edited byDaniel Forgues,Jul 28 2009
Commented and reference added byJonathan Sondow,Nov 26 2010
Unsound terms after a(9) removed byGord Palameta,Sep 06 2018
STATUS
approved