login
A135013
Partial sums ofA000265.
6
1, 2, 5, 6, 11, 14, 21, 22, 31, 36, 47, 50, 63, 70, 85, 86, 103, 112, 131, 136, 157, 168, 191, 194, 219, 232, 259, 266, 295, 310, 341, 342, 375, 392, 427, 436, 473, 492, 531, 536, 577, 598, 641, 652, 697, 720, 767, 770, 819, 844, 895, 908, 961, 988, 1043, 1050, 1107, 1136
OFFSET
1,2
COMMENTS
a(n) is also the number of elements in the set {(x,y): 1<=x,y<=n, the fraction x/y reduces to a fraction of the form (odd#)/(odd#)}. - Adam McDougall (mcdougall.adam(AT)gmail ), Feb 20 2009
LINKS
A. Erickson and F. Ruskey,Enumerating maximal tatami mat coverings of square grids with v vertical dominoes,arXiv:1304.0070 [math.CO], 2013.
R. A. MacLeod,On the Largest Odd Divisor of n,The American Mathematical Monthly, Vol. 75, No. 6 (Jun. - Jul., 1968), pp. 647-648.
FORMULA
a(n) = Sum_{k>=1} (round(n/2^k))^2. -Alejandro Erickson,Apr 13 2012
a(n) = n^2/3 + O(n) (see MacLeod link). -Michel Marcus,Dec 05 2013
a(j*2^k) = a(j) + (4^k-1)*j^2/3 for any j >= 1, k >= 0. -Jinyuan Wang,Mar 23 2019
MATHEMATICA
Accumulate[Table[Times@@(#[[1]]^#[[2]]&/@Select[FactorInteger[i], #[[1]]!= 2&]), {i, 90}]] (*Harvey P. Dale,Jun 25 2013 *)
PROG
(HP 50G Calculator) IDIV2 returns quotient & remainder to stack.
<< 0 SWAP
WHILE DUP 0 >
REPEAT 2 IDIV2 OVER + SQ ROT + SWAP
END DROP >>
#Gerald Hillier,May 02 2009, May 18 2009, Aug 01 2009
(PARI) a(n)=sum(k=1, log(n)\log(2)+1, round(n/2^k)^2) \\Charles R Greathouse IV,Oct 06 2013
KEYWORD
nonn
AUTHOR
N. J. A. Sloane,Feb 10 2008
STATUS
approved