login
A209308
Denominators of the Akiyama-Tanigawa algorithm applied to 2^(-n), written by antidiagonals.
12
1, 2, 2, 1, 2, 4, 4, 4, 8, 8, 1, 4, 8, 4, 16, 2, 2, 1, 8, 32, 32, 1, 2, 4, 4, 16, 32, 64, 8, 8, 16, 16, 64, 64, 128, 128, 1, 8, 16, 8, 32, 64, 128, 32, 256, 2, 2, 8, 16, 64, 64, 128, 64, 512, 512, 1, 2, 4, 8, 32, 64, 128, 16, 128, 512, 1024
OFFSET
0,2
COMMENTS
1/2^n and successive rows are
1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,...
1/2, 1/2, 3/8, 1/4, 5/32, 3/32, 7/128, 1/32,... =A000265/A075101,the Oresme numbers n/2^n.Paul Curtz,Jan 18 2013 and May 11 2016
0, 1/4, 3/8, 3/8, 5/16, 15/64, 21/128,... = (0 beforeA069834)/new,
-1/4, -1/4, 0, 1/4, 25/64, 27/64,...
0, -1/2, -3/4, -9/16, -5/32,...
1/2, 1/2, -9/16, -13/8,...
0, 17/8, 51/16,...
-17/8, -17/8,...
0
The first column isA198631/(A006519?), essentially the fractional Euler numbers 1, -1/2, 0, 1/4, 0,... inA060096.
Numerators b(n): 1, 1, 1, 0, 1, 1, -1, 1, 3, 1,....
Coll(n+1) - 2*Coll(n) = -1/2, -5/8, -1/2, -11/32, -7/32, -17/128, -5/64, -23/512,... = -A075677/new, from Collatz problem.
There are three different Bernoulli numbers:
The first Bernoulli numbers are 1, -1/2, 1/6, 0,... =A027641(n)/A027642(n).
The second Bernoulli numbers are 1, 1/2, 1/6, 0,... =A164555(n)/A027642(n). These are the binomial transform of the first one.
The third Bernoulli numbers are 1, 0, 1/6, 0,... =A176327(n)/A027642(n), the half sum. ViaA177427(n) andA191567(n), they yield the Balmer seriesA061037/A061038.
There are three different fractional Euler numbers:
1) The first are 1, -1/2, 0, 1/4, 0, -1/2,... inA060096(n).
Also Akiyama-Tanigawa algorithm for ( 1, 3/2, 7/4, 15/8, 31/16, 63/32,... =A000225(n+1)/A000079(n) ).
2) The second are 1, 1/2, 0, -1/4, 0, 1/2,..., mentioned byWolfdieter LanginA198631(n).
3) The third are 0, 1/2, 0, -1/4, 0, 1/2,..., half difference of 2) and 1).
Also Akiyama-Tanigawa algorithm for ( 0, -1/2, -3/4, -7/8, -15/16, -31/32,... =A000225(n)/A000079(n) ). SeeA097110(n).
LINKS
A. F. Horadam,Oresme Numbers,Fibonacci Quarterly, 12, #3, 1974, pp. 267-271.
EXAMPLE
Triangle begins:
1,
2, 2,
1, 2, 4,
4, 4, 8, 8,
1, 4, 8, 4, 16,
2, 2, 1, 8, 32, 32,
1, 2, 4, 4, 16, 32, 64,
8, 8, 16, 16, 64, 64, 128, 128,
...
MATHEMATICA
max = 10; t[0, k_]:= 1/2^k; t[n_, k_]:= t[n, k] = (k + 1)*(t[n - 1, k] - t[n - 1, k + 1]); denoms = Table[t[n, k] // Denominator, {n, 0, max}, {k, 0, max - n}]; Table[denoms[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (*Jean-François Alcover,Feb 05 2013 *)
CROSSREFS
Cf. Second Bernoulli numbersA164555(n)/A027642(n) via Akiyama-Tanigawa algorithm for 1/(n+1),A272263.
KEYWORD
nonn,frac,tabl
AUTHOR
Paul Curtz,Jan 18 2013
STATUS
approved