OFFSET
0,11
COMMENTS
a(n)/A225481(n) is a representation of the Bernoulli numbers. This is case m = 1 of the scaled generalized Bernoulli numbers defined as Sum_{k=0..n} ((-1)^k*k!/(k+1)) S_{m}(n,k) where S_{m}(n,k) are generalized Stirling subset numbers.A225481(n) can be seen as an analog of the Clausen numbersA141056(n). Reduced to lowest terms a(n)/A225481(n) becomesA027641(n)/A027642(n).
LINKS
Peter Luschny,Stirling-Frobenius numbers
Peter Luschny,Generalized Bernoulli numbers.
EXAMPLE
The numerators of 1/1, -1/2, 1/6, 0/2, -1/30, 0/6, 1/42, 0/2, -1/30, 0/10, 5/66, 0/6, -691/2730, 0/14, 35/30, 0/2, -3617/510, 0/6, 43867/798,... (the denominators areA225481(n)).
MATHEMATICA
BS[n_]:= Sum[((-1)^k*k!/(k + 1)) StirlingS2[n, k], {k, 0, n}];
W[n_]:= Product[If[Divisible[n + 1, p] || Divisible[n, p - 1], p, 1], {p, Prime /@ Range[PrimePi[n + 1]]}];
a[n_]:= BS[n] W[n];
Table[a[n], {n, 0, 38}] (*Jean-François Alcover,Jul 08 2019 *)
PROG
(Sage)
@CachedFunction
def EulerianNumber(n, k, m): # -- The Eulerian numbers --
if n == 0: return 1 if k == 0 else 0
return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) + \
(m*k+1)*EulerianNumber(n-1, k, m)
@CachedFunction
def SF_BS(n, m): # -- The scaled Stirling-Frobenius Bernoulli numbers --
return add(add(EulerianNumber(n, j, m)*binomial(j, n - k) \
for j in (0..n))/((-m)^k*(k+1)) for k in (0..n))
C = mul(filter(lambda p: ((n+1)%p == 0) or (n%(p-1) == 0), primes(n+2)))
return C*SF_BS(n, 1)
[A226156(n) for n in (0..25)]
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Peter Luschny,May 30 2013
STATUS
approved