login
A227140
a(n) = n/gcd(n,2^5), n >= 0.
4
0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 2, 65, 33, 67, 17, 69, 35
OFFSET
0,4
COMMENTS
H(n,4) = 2*n*4/(n+4) is the harmonic mean of n and 4. For n >= 4 the denominator of H(n,4) is (n+4)/gcd(8*n,n+4) = (n+4)/gcd(n+4,32). a(n+8) =A227042(n+4,4), n >= 0. The numerator of H(n,4) is given inA227107.Thus a(n) is related to denominator of the harmonic mean H(n-4, 4).
Note the difference fromA000265(n) (odd part of n) = n/gcd(n,2^n), n >= 1, which differs for the first time for n = 64. a(64) = 2, not 1.
A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). -Peter Bala,Feb 27 2019
LINKS
Index entries for linear recurrences with constant coefficients,signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
a(n) = n/gcd(n, 2^5).
a(n) = denominator(8*(n-4)/n), n >= 0 (with denominator(infinity) = 0).
FromPeter Bala,Feb 27 2019: (Start)
a(n) = numerator(n/(n + 32)).
O.g.f.: F(x) - F(x^2) - F(x^4) - F(x^8) - F(x^16) - F(x^32), where F(x) = x/(1 - x)^2. Cf.A106617.(End)
FromBernard Schott,Mar 02 2019: (Start)
a(n) = 1 iff n is 1, 2, 4, 8, 16, 32 and a(2^n) = 2^(n-5) for n >= 5.
a(n) = n iff n is odd (A005408). (End)
FromAmiram Eldar,Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^(e-min(e,5)), and a(p^e) = p^e for p > 2.
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s - 1/2^(2*s) - 1/2^(3*s) - 1/2^(4*s) - 1/2^(5*s)).
Sum_{k=1..n} a(k) ~ (683/2048) * n^2. (End)
MAPLE
seq(n/igcd(n, 32), n=0..70); #Muniru A Asiru,Feb 28 2019
MATHEMATICA
With[{c=2^5}, Table[n/GCD[n, c], {n, 0, 70}]] (*Harvey P. Dale,Feb 16 2018 *)
PROG
(PARI) a(n)=n/gcd(n, 2^5); \\Andrew Howroyd,Jul 23 2018
(Magma) [n/GCD(n, 2^5): n in [0..80]]; //G. C. Greubel,Feb 27 2019
(Sage) [n/gcd(n, 2^5) for n in (0..80)] #G. C. Greubel,Feb 27 2019
(GAP) List([0..80], n-> n/Gcd(n, 2^5)); #G. C. Greubel,Feb 27 2019
KEYWORD
nonn,frac,easy,mult
AUTHOR
Wolfdieter Lang,Jul 04 2013
EXTENSIONS
Keyword:mult added byAndrew Howroyd,Jul 23 2018
STATUS
approved