OFFSET
0,4
COMMENTS
Each number in p is counted once, regardless of its multiplicity.
EXAMPLE
a(6) counts these 7 partitions: 51, 411, 321, 3111, 2211, 21111, 111111.
MATHEMATICA
z = 30; f[n_]:= f[n] = IntegerPartitions[n]; s[k_, p_]:= Count[Mod[DeleteDuplicates[p], 5], k]
Table[Count[f[n], p_ /; MemberQ[p, s[0, p]]], {n, 0, z}] (*A241549*)
Table[Count[f[n], p_ /; MemberQ[p, s[1, p]]], {n, 0, z}] (*A241550*)
Table[Count[f[n], p_ /; MemberQ[p, s[2, p]]], {n, 0, z}] (*A241551*)
Table[Count[f[n], p_ /; MemberQ[p, s[3, p]]], {n, 0, z}] (*A241552*)
Table[Count[f[n], p_ /; MemberQ[p, s[4, p]]], {n, 0, z}] (*A241553*)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling,Apr 26 2014
STATUS
approved