login
A274174
Number of compositions of n if all summand runs are kept together.
109
1, 1, 2, 4, 7, 12, 22, 36, 60, 97, 162, 254, 406, 628, 974, 1514, 2305, 3492, 5254, 7842, 11598, 17292, 25294, 37090, 53866, 78113, 112224, 161092, 230788, 328352, 466040, 658846, 928132, 1302290, 1821770, 2537156, 3536445, 4897310, 6777806, 9341456, 12858960, 17625970, 24133832, 32910898, 44813228, 60922160, 82569722
OFFSET
0,3
COMMENTS
a(n^2) is odd. -Gregory L. Simay,Jun 23 2019
Also the number of compositions of n avoiding the patterns (1,2,1) and (2,1,2). -Gus Wiseman,Jul 07 2020
FORMULA
a(n) = Sum_{k>=0} k! *A116608(n,k). -Joerg Arndt,Jun 12 2016
EXAMPLE
If the summand runs are blocked together, there are 22 compositions of a(6): 6; 5+1, 1+5, 4+2, 2+4, (3+3), 4+(1+1), (1+1)+4, 1+2+3, 1+3+2, 2+1+3, 2+3+1, 3+1+2, 3+2+1, (2+2+2), 3+(1+1+1), (1+1+1)+3, (2+2)+(1+1), (1+1)+(2+2), 2+(1+1+1+1), (1+1+1+1)+2, (1+1+1+1+1+1).
a(0)=1; a(1)= 1; a(4) = 7; a(9) = 97; a(16) = 2305; a(25) = 78113 and a(36) = 3536445. -Gregory L. Simay,Jun 23 19
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
add(b(n-i*j, i-1, p+`if`(j=0, 0, 1)), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50); #Alois P. Heinz,Jun 12 2016
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Length[Split[#]]==Length[Union[#]]&]], {n, 0, 10}] (*Gus Wiseman,Jul 07 2020 *)
b[n_, i_, p_]:= b[n, i, p] = If[n == 0, p!, If[i < 1, 0,
Sum[b[n - i*j, i - 1, p + If[j == 0, 0, 1]], {j, 0, n/i}]]];
a[n_]:= b[n, n, 0];
Table[a[n], {n, 0, 50}] (*Jean-François Alcover,Jul 11 2021, afterAlois P. Heinz*)
CROSSREFS
The version for patterns isA001339.
The version for prime indices isA333175.
The complement (i.e., the matching version) isA335548.
Anti-run compositions areA003242.
(1,2,1)- and (2,1,2)-matching permutations of prime indices areA335462.
(1,2,1)-matching compositions areA335470.
(1,2,1)-avoiding compositions areA335471.
(2,1,2)-matching compositions areA335472.
(2,1,2)-avoiding compositions areA335473.
KEYWORD
nonn
AUTHOR
Gregory L. Simay,Jun 12 2016
EXTENSIONS
Terms a(9) and beyond fromJoerg Arndt,Jun 12 2016
STATUS
approved