login
A277590
Numbers k such that k/10^m == 3 mod 10, where 10^m is the greatest power of 10 that divides n.
9
3, 13, 23, 30, 33, 43, 53, 63, 73, 83, 93, 103, 113, 123, 130, 133, 143, 153, 163, 173, 183, 193, 203, 213, 223, 230, 233, 243, 253, 263, 273, 283, 293, 300, 303, 313, 323, 330, 333, 343, 353, 363, 373, 383, 393, 403, 413, 423, 430, 433, 443, 453, 463, 473
OFFSET
1,1
COMMENTS
Positions of 3 inA065881.
Numbers having 3 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.
LINKS
MATHEMATICA
z = 460; a[b_]:= Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
p[b_, d_]:= Flatten[Position[a[b], d]]
p[10, 1] (*A277588*)
p[10, 2] (*A277589*)
p[10, 3] (*A277590*)
p[10, 4] (*A277591*)
p[10, 5] (*A277592*)
p[10, 6] (*A277593*)
p[10, 7] (*A277594*)
p[10, 8] (*A277595*)
p[10, 9] (*A277596*)
PROG
(PARI) is(n)=n && n/10^valuation(n, 10)%10==3 \\Charles R Greathouse IV,Jan 31 2017
KEYWORD
nonn,easy,base
AUTHOR
Clark Kimberling,Nov 05 2016
STATUS
approved