login
A353863
Number of integer partitions of n whose weak run-sums cover an initial interval of nonnegative integers.
21
1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 11, 16, 20, 24, 30, 43, 47, 62, 79, 94, 113, 143, 170, 211, 256, 307, 372, 449, 531, 648, 779, 926, 1100, 1323, 1562, 1864, 2190, 2595, 3053, 3611, 4242, 4977, 5834, 6825, 7973, 9344, 10844, 12641, 14699, 17072, 19822
OFFSET
0,4
COMMENTS
A weak run-sum of a sequence is the sum of any consecutive constant subsequence. For example, the weak run-sums of (3,2,2,1) are {1,2,3,4}.
This is a kind of completeness property, cf.A126796.
EXAMPLE
The a(1) = 1 through a(8) = 7 partitions:
(1) (11) (21) (211) (311) (321) (3211) (3221)
(111) (1111) (2111) (3111) (4111) (32111)
(11111) (21111) (22111) (41111)
(111111) (31111) (221111)
(211111) (311111)
(1111111) (2111111)
(11111111)
MATHEMATICA
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
msubs[s_]:=Join@@@Tuples[Table[Take[t, i], {t, Split[s]}, {i, 0, Length[t]}]];
wkrs[y_]:=Union[Total/@Select[msubs[y], SameQ@@#&]];
Table[Length[Select[IntegerPartitions[n], normQ[Rest[wkrs[#]]]&]], {n, 0, 15}]
PROG
(PARI) \\ isok(p) tests the partition.
isok(p)={my(b=0, s=0, t=0); for(i=1, #p, if(p[i]<>t, t=p[i]; s=0); s += t; b = bitor(b, 1<<(s-1))); bitand(b, b+1)==0}
a(n) = {my(r=0); forpart(p=n, r+=isok(p)); r} \\Andrew Howroyd,Jan 15 2024
CROSSREFS
For parts instead of weak run-sums we haveA000009.
For multiplicities instead of weak run-sums we haveA317081.
If weak run-sums are distinct we haveA353865,the completion ofA353864.
A003242counts anti-run compositions, ranked byA333489,complementA261983.
A005811counts runs in binary expansion.
A165413counts distinct run-lengths in binary expansion, sumsA353929.
A300273ranks collapsible partitions, counted byA275870,compsA353860.
A353832represents taking run-sums of a partition, compositionsA353847.
A353833ranks partitions with all equal run-sums, counted byA304442.
A353835counts distinct run-sums of prime indices.
A353837counts partitions with distinct run-sums, ranked byA353838.
A353840-A353846pertain to partition run-sum trajectory.
A353861counts distinct weak run-sums of prime indices.
A353932lists run-sums of standard compositions.
KEYWORD
nonn
AUTHOR
Gus Wiseman,Jun 04 2022
EXTENSIONS
a(31) onwards fromAndrew Howroyd,Jan 15 2024
STATUS
approved