a[n_]:= 1/4* Module[{aux = IntegerDigits[2^(n + 1), 5]}, Sum[aux[[i]], {i, 1, Length[aux]}]] [FromJ.M._JoséMaríaGrau Ribas(grau(AT)uniovi.es),_,Feb 13 2010]
a[n_]:= 1/4* Module[{aux = IntegerDigits[2^(n + 1), 5]}, Sum[aux[[i]], {i, 1, Length[aux]}]] [FromJ.M._JoséMaríaGrau Ribas(grau(AT)uniovi.es),_,Feb 13 2010]
More terms from_James A. Sellers(sellersj(AT)math.psu.edu),_,Jul 04 2000
_Lekraj Beedassy(blekraj(AT)yahoo.com),_,Jun 20 2000
a[n_]:= 1/4* Module[{aux = IntegerDigits[2^(n + 1), 5]}, Sum[aux[[i]], {i, 1, Length[aux]}]] [From J. M. Grau Ribas (grau(AT)uniovi.es), Feb 13 2010]
nonn,base,new
nonn,base,new
Lekraj Beedassy (boodhimanblekraj(AT)yahoo ), Jun 20 2000
nonn,base,new
Lekraj Beedassy (beedassylekrajboodhiman(AT)hotmailyahoo), Jun 20 2000
One fourth the digital sum of base 5 representations of 2^n.
1, 1, 1, 1, 2, 1, 1, 2, 3, 3, 3, 3, 2, 3, 4, 5, 5, 5, 4, 3, 5, 6, 7, 5, 8, 8, 6, 8, 10, 10, 8, 6, 7, 8, 8, 10, 7, 9, 9, 10, 11, 10, 9, 10, 9, 11, 11, 11, 11, 12, 13, 13, 12, 14, 10, 14, 17, 15, 13, 13, 12, 15, 14, 16, 15, 12, 14, 15, 15, 16, 15, 15, 15, 16, 13, 12, 16, 17, 14, 20, 20, 20
2,5
a(19) = 4 because 2^20 = 1048576 = 232023301 (to scale 5) and (2+3+2+0+2+3+3+0+1)/4 = 4
nonn,base
Lekraj Beedassy (beedassylekraj@hotmail ), Jun 20 2000
More terms from James A. Sellers ([email protected]), Jul 04 2000
approved