login

Revision History forA309733

(Bold, blue-underlined text is anaddition; faded, red-underlined text is adeletion.)

Showing entries 1-10 |older changes
Expansion of Product_{k>=1} 1/(1 - x^k/(1 - x^(2*k))).
(history; published version)
#41byVaclav Kotesovecat Sun Sep 22 11:55:06 EDT 2019
STATUS

editing

approved

#40byVaclav Kotesovecat Sun Sep 22 11:54:53 EDT 2019
FORMULA

a(n) ~ phi^(n+1), where phi =A001622= (1+sqrt(5))/2 is the golden ratio. -Vaclav Kotesovec,Sep 22 2019

#39byVaclav Kotesovecat Sun Sep 22 11:47:18 EDT 2019
MATHEMATICA

nmax = 40; CoefficientList[Series[Product[1/(1 - x^k/(1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (*Vaclav Kotesovec,Sep 22 2019 *)

STATUS

reviewed

editing

#38byJoerg Arndtat Sun Sep 22 09:17:12 EDT 2019
STATUS

proposed

reviewed

#37bySeiichi Manyamaat Sun Sep 22 09:01:49 EDT 2019
STATUS

editing

proposed

#36bySeiichi Manyamaat Sun Sep 22 09:01:45 EDT 2019
FORMULA

G

#35bySeiichi Manyamaat Sun Sep 22 08:55:40 EDT 2019
FORMULA

G

STATUS

proposed

editing

#34bySeiichi Manyamaat Sun Sep 22 08:18:34 EDT 2019
STATUS

editing

proposed

#33bySeiichi Manyamaat Sun Sep 22 06:53:24 EDT 2019
NAME

Expansion of1/Product_{k>=1}1/(1-x^k/(1-x^(2*k))).

#32bySeiichi Manyamaat Sun Sep 22 06:48:45 EDT 2019
PROG

(PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k/(1-x^(2*k))))