OFFSET
1,1
COMMENTS
Sequence appears to include all numbers m such that 8^5 is the highest power of 2 dividingA005148(m). General conjecture: numbers k such that 8^j is the highest power of 2 dividingA005148(k) is the same sequence as numbers having exactly (j+1) 1's in their binary representation. -Benoit Cloitre,Jun 22 2002
LINKS
Ivan Neretin,Table of n, a(n) for n = 1..10000
Robert Baillie,Summing the curious series of Kempner and Irwin,arXiv:0806.4410 [math.CA], 2008-2015. See p. 18 for Mathematica code irwinSums.m.
FORMULA
a(n+1) =A057168(a(n)). -M. F. Hasler,Aug 27 2014
Sum_{n>=1} 1/a(n) = 1.387753111935705074750004158584017188750706394077047633137401652680870607884... (calculated using Baillie's irwinSums.m, see Links). -Amiram Eldar,Feb 14 2022
MATHEMATICA
Select[ Range[ 63, 380 ], (Count[ IntegerDigits[ #, 2 ], 1 ]==6)& ]
PROG
(PARI) is_A023688(n)=hammingweight(n)==6 \\M. F. Hasler,Aug 27 2014
(PARI) print1(t=2^6-1); for(i=2, 50, print1( "," t=A057168(t))) \\M. F. Hasler,Aug 27 2014
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved