login
A063494
a(n) = (2*n - 1)*(7*n^2 - 7*n + 3)/3.
19
1, 17, 75, 203, 429, 781, 1287, 1975, 2873, 4009, 5411, 7107, 9125, 11493, 14239, 17391, 20977, 25025, 29563, 34619, 40221, 46397, 53175, 60583, 68649, 77401, 86867, 97075, 108053, 119829, 132431, 145887, 160225, 175473, 191659, 208811
OFFSET
1,2
COMMENTS
InterpretA176271as an infinite square array read by antidiagonals, with rows 1,5,11,19,...; 3,9,17,27,... and so on. The sum of the terms in the n X n upper submatrix are s(n) = 1, 18, 93, 296,... = n^2*(7*n^2-1)/6, and a(n) = s(n) - s(n-1) are the first differences. -J. M. Bergot,Jun 27 2013
LINKS
T. P. Martin,Shells of atoms,Phys. Rep., 273 (1996), 199-241, eq. (10).
FORMULA
G.f.: x*(1+x)*(1+12*x+x^2)/(1-x)^4. -Colin Barker,Mar 02 2012
E.g.f.: (-3 + 6*x + 21*x^2 + 14*x^3)*exp(x)/3 + 1. -G. C. Greubel,Dec 01 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). -Wesley Ivan Hurt,May 11 2023
MATHEMATICA
Table[(2*n - 1)*(7*n^2 - 7*n + 3)/3, {n, 1, 30}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 17, 75, 203}, 30] (*G. C. Greubel,Dec 01 2017 *)
PROG
(PARI) { for (n=1, 1000, write( "b063494.txt", n, "", (2*n - 1)*(7*n^2 - 7*n + 3)/3) ) } \\Harry J. Smith,Aug 23 2009
(Magma) [(2*n - 1)*(7*n^2 - 7*n + 3)/3: n in [1..30]]; //G. C. Greubel,Dec 01 2017
(PARI) x='x+O('x^30); Vec(serlaplace((-3+6*x+21*x^2+14*x^3)*exp(x)/3 + 1)) \\G. C. Greubel,Dec 01 2017
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane,Aug 01 2001
STATUS
approved