login
A176271
The odd numbers as a triangle read by rows.
25
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
OFFSET
1,2
COMMENTS
A108309(n) = number of primes in n-th row.
LINKS
Eric Weisstein's World of Mathematics,Nicomachus's Theorem
FORMULA
T(n, k) = n^2 - n + 2*k - 1 for 1 <= k <= n.
T(n, k) =A005408(n*(n-1)/2 + k - 1).
T(2*n-1, n) =A016754(n-1) (main diagonal).
T(2*n, n) =A000466(n).
T(2*n, n+1) =A053755(n).
T(n, k) + T(n, n-k+1) =A001105(n), 1 <= k <= n.
T(n, 1) =A002061(n), central polygonal numbers.
T(n, 2) =A027688(n-1) for n > 1.
T(n, 3) =A027690(n-1) for n > 2.
T(n, 4) =A027692(n-1) for n > 3.
T(n, 5) =A027694(n-1) for n > 4.
T(n, 6) =A048058(n-1) for n > 5.
T(n, n-3) =A108195(n-2) for n > 3.
T(n, n-2) =A082111(n-2) for n > 2.
T(n, n-1) =A014209(n-1) for n > 1.
T(n, n) =A028387(n-1).
Sum_{k=1..n} T(n, k) =A000578(n) (Nicomachus's theorem).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A065599(n) (alternating sign row sums).
Sum_{j=1..n} (Sum_{k=1..n} T(j, k)) =A000537(n) (sum of first n rows).
EXAMPLE
FromPhilippe Deléham,Oct 03 2011: (Start)
Triangle begins:
1;
3, 5;
7, 9, 11;
13, 15, 17, 19;
21, 23, 25, 27, 29;
31, 33, 35, 37, 39, 41;
43, 45, 47, 49, 51, 53, 55;
57, 59, 61, 63, 65, 67, 69, 71;
73, 75, 77, 79, 81, 83, 85, 87, 89; (End)
MAPLE
A176271:= proc(n, k)
n^2-n+2*k-1;
end proc: #R. J. Mathar,Jun 28 2013
MATHEMATICA
Table[n^2-n+2*k-1, {n, 15}, {k, n}]//Flatten (*G. C. Greubel,Mar 10 2024 *)
PROG
(Haskell)
a176271 n k = a176271_tabl!! (n-1)!! (k-1)
a176271_row n = a176271_tabl!! (n-1)
a176271_tabl = f 1 a005408_list where
f x ws = us: f (x + 1) vs where (us, vs) = splitAt x ws
--Reinhard Zumkeller,May 24 2012
(Magma) [n^2-n+2*k-1: k in [1..n], n in [1..15]]; //G. C. Greubel,Mar 10 2024
(SageMath) flatten([[n^2-n+2*k-1 for k in range(1, n+1)] for n in range(1, 16)]) #G. C. Greubel,Mar 10 2024
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller,Apr 13 2010
STATUS
approved