login
A324545
An analog of sigma (A000203) for nonstandard factorization based on the sieve of Eratosthenes (A083221).
6
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 40, 36, 24, 60, 31, 42, 32, 56, 30, 72, 32, 63, 78, 54, 48, 91, 38, 60, 48, 90, 42, 120, 44, 84, 121, 72, 48, 124, 57, 93, 124, 98, 54, 96, 156, 120, 104, 90, 60, 168, 62, 96, 56, 127, 72, 234, 68, 126, 240, 144, 72, 195, 74, 114, 72, 140, 96, 144, 80
OFFSET
1,2
FORMULA
a(n) =A000203(A250246(n)) =A324535(n) +A250246(n).
a(1) = 1; for n > 1, let p =A020639(n) [the smallest prime factor of n], then a(n) = (((p^(1+A302045(n)))-1) / (p-1)) * a(A302044(n)).
a(n) =A324054(A252754(n)).
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ FromA020639
A055396(n) = if(1==n, 0, primepi(A020639(n)));
v078898 = ordinal_transform(vector(up_to, n,A020639(n)));
A078898(n) = v078898[n];
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ FromA003961
A250246(n) = if(1==n, n, my(k = 2*A250246(A078898(n)), r =A055396(n)); if(1==r, k, while(r>1, k =A003961(k); r--); (k)));
A324545(n) = sigma(A250246(n));
(PARI)
\\ Or alternatively, using alsoA078898defined above:
A000265(n) = (n/2^valuation(n, 2));
A001511(n) = 1+valuation(n, 2);
A302044(n) = { my(c =A000265(A078898(n))); if(1==c, 1, my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d =A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p), d -= 1)); (k*p)); };
A324545(n) = if(1==n, n, my(p=A020639(n)); (((p^(A302045(n)+1))-1)/(p-1))*A324545(A302044(n)));
KEYWORD
nonn
AUTHOR
Antti Karttunen,Mar 06 2019
STATUS
approved