Przejdź do zawartości

Gen

Z Wikipedii, wolnej encyklopedii

Gen(gr.γένος– ród, pochodzenie) – pojęcie teoretyczne stosowane w wielu działach biologii oraz innych dziedzinach wiedzy[1].Słowo ma różne znaczenie zmieniające się w czasie oraz zależne od przedmiotu badań biologów[2].Dwie główne koncepcje to gen ewolucyjny oraz gen molekularny. Obie są rozwijane i dyskutowane. W koncepcji ewolucyjnej geny są konkurującymi odcinkami kwasu nukleinowego, których reprezentacja w kolejnych pokoleniach ulega zmianie. Koncepcja molekularna za geny uznaje odcinki DNA ulegające ekspresji realizowanej przez syntezę RNA lub białek[3].Geny należy odróżnić odpseudogenów,które są niedziałającymi kopiami genów.

W nauczaniu szkolnym jest podstawową jednostkądziedzicznoścideterminującą powstaniebiałkalubkwasu rybonukleinowegozapisaną w sekwencji nukleotydówkwasu deoksyrybonukleinowego[4][5].

W roku 2016 zauważono, żeinformacja genetycznamoże być zapisana nie tylko za sprawą sekwencji nukleotydów, ale także wynikać ze wzajemnego ułożenianukleosomóww chromatynie. Mechaniczne właściwości nukleosomów mogą być więc nie tylko ubocznym efektem sekwencji, lecz wiązać się z mechaniczną ewolucją DNA[6].

Historia terminu

[edytuj|edytuj kod]

Termin gen wprowadził botanikWilhelm Johannsenw 1909 roku jako pojęcie teoretyczne w odniesieniu do koncepcji dziedziczenia cech opracowanej przezGrzegorza Mendlaw roku 1866[7].Samo słowo nawiązywało do terminu pangen stosowanego przezHugo de Vriesa.Pangeny były rozwinięciemteorii pangenezysformułowanej przezKarola Darwina[8].Darwin w swoich dziełach cząstki, które mogły przemieszczać się między komórkami i trafiając do gamet zapewniały zmienność niezbędną do napędzaniadoboru naturalnego,nazywał gemmule. Także w XIX wiekuHerbert Spencerpostulował istnienie fizjologicznych jednostek zapewniających dziedziczenie cech[1].Hugo de Vries był jednym z trzech naukowców, którzy w roku 1900 niezależnie powtórnie odkryliprawa Mendla.Pozostali toCarl CorrensorazErich von Tschermak-Seysenegg[8].Mendel sformułował prawa dziedziczenia jednostek dziedziczności cech zauważając, że gamety mają takich jednostek po 50%, a jednostki te mogą mieć charakter dominujący, recesywny bądź mieszany. Słowo „gen” wprowadzone przez Johannsena zastąpiło wszystkie wcześniej stosowane określenia jednostek, elementów, czynników wpływających na dziedziczenie cech i inne słowa o podobnym znaczeniu[1].

Kryteria definicji genu

[edytuj|edytuj kod]

Fragment DNA zawiera informacje pozwalającą komórce na syntezęRNA(różnychmRNA,tRNA,rRNAi in.), a pośrednio kodujący zwykle także jakieśbiałko(za pośrednictwem mRNA; mRNA określa budowę określonego białka, a tRNA i rRNA to cząsteczki pomocnicze uczestniczące w tworzeniu białek kodowanych w różnych mRNA; poszczególne rodzaje ogromnie zróżnicowanych cząsteczek mRNA zakodowane są w różnych genach).

Typowe geny zawierają informacje o tym:

  1. jak zbudować jakieś białko (tzn. w jakiej kolejności połączyćaminokwasyw ciągły łańcuch)
  2. w jakich okolicznościach (warunkach) należy to białko tworzyć
  3. z jaką intensywnością i przez jaki czas je wytwarzać
  4. do jakiego przedziału komórki je przesyłać (np. domitochondriówczy dowakuoli)
  5. u organizmów tkankowych także informację o tym, w którychtkankach,w jakiego typu komórkach dany produkt ma powstawać.

Geny organizmóweukariotycznychzawierają część kodującą, zawierającą odpowiedź na powyższe pytania (1) i (4), oraz odcinki regulatorowe, wyznaczające odpowiedź na pozostałe z powyższych pytań. Wśród odcinków regulatorowych szczególnie ważna rola przypada odcinkowi poprzedzającemu część kodującą i zwanemupromotorem.Tuż za częścią kodującą znajduje się odcinek regulatorowy zwanyterminatorem,zawierający polecenie przerwaniatranskrypcjii poddania transkryptu modyfikacjom określającym jego trwałość.

By mówić o kolejności składników genu, trzeba określić, gdzie jest jego początek, a gdzie koniec, i która z dwóch nici składających się na cząsteczkę DNA jest analizowana. Przyjęto, że opisując DNA, omawia się tę nić, która ma sekwencję zbliżoną do sekwencji transkryptu, a nie komplementarną do transkryptu. Inaczej mówiąc analizuje się nić, która podczas transkrypcji nie jest wykorzystywana jako matryca, ale która zawiera sekwencję transkryptu (przy uwzględnieniu wszystkich podstawowych różnic pomiędzy RNA a DNA). Analizę tej sekwencji zaczyna się odkońca 5'.Fragmenty położone bliżejkońca 3'uważane są za położone dalej, czy, jak się czasem pisze, „niżej”, w obrębie genu.

U organizmówprokariotycznychkilka części kodujących różnych genów może korzystać z tego samego promotora i innych pomocniczych sekwencji (por.operon). Zarówno u organizmów prokariotycznych, jak i eukariotycznych (znacznie częściej jednak u tych ostatnich) część kodująca genu może zawierać fragmenty (sekwencje), których kopii nie ma w dojrzałych, gotowych do działania, cząsteczkach mRNA. Takie wstawki w części kodującej, początkowo przepisywane na mRNA, a później z niego usuwane, nazywamyintronami.Fragmenty części kodującej genu, które pozostają po wycięciu intronów z pierwotnego transkryptu i składają się na dojrzały mRNA, nazywane sąeksonami(albo – bardziej po polsku – egzonami). Czasami (choć rzadko) jeden gen jest składnikiem intronu innego genu. U organizmów prokariotycznych, a także (częściej) uwirusów,zdarza się też, że ten sam odcinek DNA bywa wykorzystywany jako składnik kilku różnych genów, zależnie od sposobu jego odczytywania (tak jak np. zapis „maskarada” może być odczytany jako jedno słowo, albo zbitka słów „maska” + „rada”, albo nawet „maska” +„kara” +„rada” ). W przypadku DNA może się też zdarzyć (choć rzadko), że jedna informacja (gen) zapisana jest na jednej nici, a inna na drugiej, komplementarnej nici (sekwencje obu genów odczytywane są wtedy w przeciwnych kierunkach, a ich koniec i początek nie pokrywają się). Oznacza to, że komórkowe mechanizmy transkrypcji, obróbki transkryptów ibiosyntezy białekwykazywać mogą pewną (bardzo ograniczoną) swobodę w odczytywaniu informacji genetycznej.

Zobacz też

[edytuj|edytuj kod]

Przypisy

[edytuj|edytuj kod]
  1. abcChorąży Mieczysław.Gen strukturalny – ewolucja pojęcia i dylematy.„Nauka”. 3, s. 57–108, 2009.
  2. Karola Stotz, Paul E. Griffiths, Rob Knight.How biologists conceptualize genes: an empirical study.„Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences”. 35 (4), s. 647–673, 2004.DOI:10.1016/j.shpsc.2004.09.005.ISSN1369-8486.(ang.).
  3. Paul E. Griffiths, Eva M. Neumann-Held.The Many Faces of the Gene.„BioScience”. 49 (8), s. 656, 1999.DOI:10.2307/1313441.ISSN0006-3568.(ang.).
  4. Marzena Popielarska-Konieczna:Słownik szkolny: biologia.Kraków: Wydawnictwo Zielona Sowa, 2003, s. 173.ISBN83-7389-096-3.
  5. Biologia: słownik encyklopedyczny.Warszawa: Wydawnictwo Europa, 2001, s. 89.ISBN83-87977-73-X.
  6. Tamir Tuller, Behrouz Eslami-Mossallam, Raoul D. Schram, Marco Tompitak i inni.Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach.„PLOS ONE”. 11 (6), s. e0156905, 2016.DOI:10.1371/journal.pone.0156905.ISSN1932-6203.(ang.).
  7. Heller i Pabjan 2014 ↓,s. 240.
  8. abM.B. Gerstein, C. Bruce, J.S. Rozowsky, D. Zheng i inni.What is a gene, post-ENCODE? History and updated definition.„Genome Research”. 17 (6), s. 669–681, 2007.DOI:10.1101/gr.6339607.ISSN1088-9051.(ang.).

Bibliografia

[edytuj|edytuj kod]

Linki zewnętrzne

[edytuj|edytuj kod]