Неравновесная термодинамика

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Разделы термодинамики

Неравновесная термодинамика— разделтермодинамики,изучающий системы вне состояниятермодинамического равновесияинеобратимые процессы.Возникновение этой области знания связано главным образом с тем, что подавляющее большинство встречающихся в природе систем находятся вдали от термодинамического равновесия.

Необходимость в создании новой теории возникла в первой половине двадцатого века. Пионером в этом направлении сталЛарс Онсагер1931 годуопубликовавший две работы, посвященные неравновесной термодинамике.[1][2]В дальнейшем значительный вклад в развитие неравновесной термодинамики внеслиЭккарт[3],Майкснери Райк[4],Д. Н. Зубарев[5],Пригожин[6],Де Грооти Мазур[7],Гуров К. П.и другие. Теория неравновесных систем активно развивается и в настоящее время.

Классическая формулировка неравновесной термодинамики

[править|править код]

Основные положения

[править|править код]

Классическая неравновесная термодинамика основана на фундаментальном предположении олокальном равновесии(И. Р. Пригожин,1945[8]). Концепция локального равновесия заключается в том, чторавновесные термодинамические соотношения справедливы для термодинамических переменных, определённых в элементарном объёме,то есть рассматриваемая система может быть мысленно разделена в пространстве на множество элементарных ячеек, достаточно больших, чтобы рассматривать их как макроскопические системы, но в то же время достаточно малых для того, чтобы состояние каждой из них было близко ксостоянию равновесия.Данное предположение справедливо для очень широкого класса физических систем, что и определяет успех классической формулировки неравновесной термодинамики.

Концепция локального равновесия подразумевает, что всеэкстенсивные переменные(энтропия,внутренняя энергия,массовая долякомпонента) заменяются своими плотностями:

В то же время всеинтенсивные переменные,такие кактемпература,давлениеихимический потенциалдолжны быть заменены соответствующими функциями координат и времени:

при этом они определяются так же, как и в равновесном случае, то есть.

Далее, посредством введенных выше функций переписываются законы и соотношения из равновесной термодинамики в локальной форме.Первое начало(закон сохранения энергии):

,— сумма плотностей кинетической и внутренней энергий,— поток энергии.

Второе начало:

производство энтропии в каждой части системы, вызванное необратимыми процессами, неотрицательно, то есть.

Важную роль в классической неравновесной термодинамике играет локальная формауравнения Гиббса—Дюгема:

Переписав на последнем соотношении с учетом локальной формы закона сохранения энергии, массы, и сравнив с локальной формой второго начала, нетрудно получить следующий вид для производства энтропии:

Здесь:

  • поток теплоты,
  • — скоростьцентра масс,
  • — потокдиффузии,
  • тензор вязких напряженийразложен следующим образом:,где тензор вязкого давленияразложен на объемное вязкое давлениеи девиатор с нулевым следом,
  • аналогично,тензор скоростей деформацииможет быть разложен следующим образом:,
  • двоеточие— двойное скалярное произведениетензоров,
  • химическое сродствореакции,— соответствующаястепень полноты реакции,
  • электрическое полев системе координат, движущейся со скоростью,токпроводимости.

Потоки и силы

[править|править код]

В рамках классической неравновесной термодинамики описание необратимых процессов происходит при помощитермодинамических силитермодинамических потоков.Основанием для введения данных величин является то, что через них производство энтропии выражается в простой форме. Дадим явные выражения для различных сил и потоков. Из приведенного выше выражения для производства энтропии видно, чтопредставляет собой билинейную форму:

,

где— термодинамический поток,— термодинамическая сила. Следует особо подчеркнуть произвольность разделения на термодинамические потоки и силы. Например, множительможно отнести не к силе, а к потоку. Силы и потоки можно даже поменять местами, однако всё же естественно считать, что термодинамические силы порождают термодинамические потоки, как градиент температуры порождает поток теплоты. Пример разделения сил и потоков показан в таблице:

Сила
Поток

Как видно, потоки и силы могут быть не толькоскалярами,но такжевекторамиитензорами.

Линейные материальные уравнения

[править|править код]

Потоки являются неизвестными величинами, в отличие от сил, которые представляют собой функции от переменных состояния и/или их градиентов. Экспериментально установлено, что потоки и силы связаны друг с другом, причем заданный поток зависит не только от своей силы, но может зависеть также от других термодинамических сил и от переменных состояния:

Соотношения такого вида между потоками и силами называютсяфеноменологическими соотношениямиилиматериальными уравнениями.Они в совокупности с уравнениями баланса массы, импульса и энергии представляют замкнутую систему уравнений, которая может быть решена при заданных начальных и граничных условиях. Так как в положении термодинамического равновесия силы и потоки обращаются в нуль, то разложение материального уравнения вблизи положения равновесия принимает следующий вид:

Величиныназываются феноменологическими коэффициентами и в общем случае зависят от переменных состояния,и.Важно отдавать себе отчет в том, что, например, такая сила, какспособна вызывать не только поток теплоты,но электрический ток.На феноменологические коэффициенты накладывается ряд ограничений, подробнее о них изложено всоответствующей статье.

Другим важным результатом, полученным в рамках линейной неравновесной термодинамики, являетсятеорема о минимуме производства энтропии:

В линейном режиме полное производство энтропии в системе, подверженной потоку энергии и вещества, в неравновесномстационарномсостоянии достигает минимального значения.

Также в этом случае (линейный режим, стационарное состояние) показано, что потоки с собственными нулевыми силами равны нулю. Таким образом, например, при наличии постоянного градиента температуры, но при отсутствии поддерживаемого градиента концентрации система приходит к состоянию с постоянным потоком тепла, но с отсутствием потока вещества.

Системы вне локального равновесия

[править|править код]

Несмотря на успехи классического подхода, у него есть существенный недостаток — он основывается на предположении о локальном равновесии, что может оказаться слишком грубым допущением для достаточно обширного класса систем и процессов, таких как системы с памятью,растворыполимеров,сверхтекучие жидкости,суспензии,наноматериалы,распространениеультразвукав газах, гидродинамикафононов,ударные волны,разреженные газы и т. д. Важнейшими критериями, которые предопределяет, к какому из термодинамических подходов следует обратиться исследователю при математическом моделировании конкретной системы, являются скорость изучаемого процесса и желаемый уровень согласия теоретических результатов с экспериментом. Классическаяравновесная термодинамикарассматриваетквазистатические процессы,классическая неравновесная термодинамика — относительно медленные неравновесные процессы (теплопроводность,диффузиюи т. п.) Ограничения, накладываемые принципом локального равновесия на скорость моделируемого процесса, снимаются в таких подходах к построению неравновесной термодинамики, какрациональная термодинамикаирасширенная неравновесная термодинамика.

Рациональная термодинамика

[править|править код]

Историческая справка

[править|править код]

Рациональная термодинамика рассматриваеттермические явлениявсплошных средахна основе нетрадиционного подходаК. Трусделла,П. А. Жилинаи их последователей[9][10][11][12]:«традиционный подход… ни в коем случае не является неправильным, однако он не удовлетворяет современным требованиям строгости и ясности»[13].К. Трусделл ведёт отсчёт истории рациональной термодинамики от работБ. Коулмена[фр.]иУ. Нолла[англ.]1950-х годов[14](см.Noll, 1975).

Цель продолжающей развиваться рациональной термодинамики — создать строгую математическуюаксиоматикуисходных положений термомеханики сплошных сред с тем, чтобы она охватывала по возможности максимально широкий классмоделей,а интуитивные представления офизических явленияхнашли своё выражение в математической формеопределяющих соотношений.Фундамент теории строится на базе такихматематических структури понятий, каквекторные,метрическиеитопологические пространства,непрерывные и дифференцируемыеотображения,многообразия,тензоры,группыи их представления и т. п. Для простых объектов такой усложненный подход не требуется, но для более сложных явлений в сплошных средах, напримервязкоупругости,ползучести,эффектов памяти (гистерезис),релаксациии т. п., построениефеноменологических моделейчасто наталкивается на трудности, значительная часть которых относится к формированию адекватного математического аппарата. Поэтому точное описание математической структуры объекта на основе аксиоматики и её логических следствий имеет не только методический интерес, но и прикладное значение.

Особенности рациональной термодинамики

[править|править код]
  • Рациональная термодинамика не подразделяет термодинамику наравновеснуюи неравновесную; обе эти дисциплины рассматриваются как единая частьфизики сплошных сред.Время изначально в явном виде входит в уравнения рациональной термодинамики.
  • Взамен принципа локального равновесия используют гипотезу о наличии у материалов памяти, согласно которой поведение системы в данный момент времени определяется не только текущими значениями переменных, но и их предысторией.
  • Разрешено использовать те и только те понятия, которые допускаютформализацию.
  • Рассматриваются не природные объекты, ателаматематические понятия,полученные абстрагированием некоторых общих черт многих природных объектов. Теория устанавливает общие законы, которым подчиняются все тела.
  • Конкретные тела (материалы) описывают посредствомматематических моделей,которые представляют собой наборы определяющих уравнений; в состояниитермодинамического равновесияв качестве определяющих уравнений выступаютуравнения состояния.
  • Исходными неопределяемыми переменными теории являются пространственные координаты, время, масса, температура, энергия и скорость подвода/отвода теплоты. Они вводятся априори и в рамках рациональной термодинамики не имеют точной физической интерпретации.
  • В рациональной термодинамике не обосновывают существование температуры на основе представлений отермическом равновесии;более того, такого рода доказательства рассматриваются как «порочные круги метафизики»[15].В отличие от тех систем построения термодинамики, в которых температуру выражают через внутреннюю энергию и энтропию[16][17],в рациональной термодинамике, наоборот, энтропию выражают через внутреннюю энергию и температуру.
  • Второе начало термодинамикирассматривается не как ограничение на возможные процессы, а как ограничение на допустимый вид уравнений, описывающих реальные системы и процессы[18].
  • Терминология, используемая в работах по рациональной термодинамике, часто отличается от общепринятой (например, энтропия может называться «калорией»), что затрудняет восприятие.

К. Трусделл о традиционном подходе к построению термодинамики

[править|править код]

Расширенная неравновесная термодинамика

[править|править код]

Расширенная неравновесная термодинамика[19][20][21][22]ориентирована на рассмотрение процессов в ситуациях, когда характерное время процесса сравнимо со временем релаксации. Она базируется на отказе от принципа локального равновесия и обусловленного этим обстоятельством применением дополнительных переменных для задания локально-неравновесного состояния элементарного объёма среды. В этом случае в выражения для энтропии, потока энтропии и скорости возникновения энтропии включают дополнительные независимые переменные, в качестве которых используют диссипативные потоки, то естьпоток энергии,поток массы итензор напряжений,а также потоки второго и более высоких порядков (поток потока энергии и т. д.)[23][24].Такой подход хорошо зарекомендовал себя для описания быстрых процессов и для малых линейных масштабов.

Отказ от формализма классической неравновесной термодинамики с математической точки зрения означает замену дифференциальных уравнений параболического типа на гиперболические дифференциальные уравнения для диссипативных потоков эволюционного (релаксационного) типа. Это, в свою очередь, означает замену противоречащих как экспериментальным данным, так и принципу причинности моделей с бесконечной скоростью распространения возмущений в сплошной среде (типамодели Фурье,в соответствии с которой изменение температуры в какой-то точке мгновенно распространяется на всё тело) на модели с конечной скоростью распространения возмущений.

Уравнение теплопроводности гиперболического типа сочетает в себе свойства как классического закона Фурье, описывающего чисто диссипативный способ передачи энергии, так и волнового уравнения, описывающего распространение незатухающих волн. Это объясняет экспериментально наблюдаемые волновые свойства процесса теплопереноса при низких температурах — распространение тепловой волны с конечной скоростью, отражение тепловой волны от теплоизолированной границы, а при падении на границу раздела двух сред частичное отражение и частичное прохождение в другую среду, интерференцию тепловых волн[24].

Последовательное введение потоков второго и более высокого порядков приводит к тому, что математические модели, описывающие локально-неравновесные процессы переноса, представляют собой иерархическую последовательность дифференциальных уравнений в частных производных, порядок которых увеличивается с увеличением степени отклонения системы от локального равновесия.

Гамильтоновы формулировки неравновесной термодинамики

[править|править код]

Гамильтоноваформулировка неравновесной термодинамики[25]привлекает элегантностью, лаконичностью и мощными численными методами, разработанными для гамильтоновых систем. Рассмотрению связи междупринципом Гамильтонаи интегральным вариационнымпринципомДьярматипосвящён раздел в монографии[26].

  1. L. Onsager, Phys. Rev.37(1931) 405
  2. L. Onsager, Phys. Rev.38(1931) 2265
  3. C. Eckart, Phys. Rev.58(1940) 267, 269, 919
  4. J. Meixner and H. Reik, Thermodynamik der Irreversiblen Prozesse (Handbuch der Physik III/2), (S. Flugge, ed.), Springer,Berlin, 1959.
  5. D. N. Zubarev,Double-time Green functions in statistical physics,Sov. Phys. Uspekhi, 1960,3(3), 320—345.
  6. I. Prigogine,Introduction to Thermodynamics of Irreversible Processes,Interscience, New York, 1961.
  7. S.R. de Groot and P. Mazur,Non-equlibrium Thermodynamics,North-Holland, Amsterdam, 1962.
  8. Пригожин И., Введение в термодинамику необратимых процессов, 2001,с. 127.
  9. Трусделл К., Термодинамика для начинающих, 1970.
  10. Трусделл К., Первоначальный курс рациональной механики сплошных сред, 1975.
  11. Truesdell C., Rational Thermodynamics, 1984.
  12. Жилин П. А., Рациональная механика сплошных сред, 2012.
  13. Трусделл К., Первоначальный курс рациональной механики сплошных сред, 1975,с. 15.
  14. Трусделл К., Термодинамика для начинающих, 1970,с. 16.
  15. Truesdell, Bharatha, 1977,p. 5.
  16. Guggenheim, 1986,p. 15.
  17. Ландау Л. Д., Лифшиц Е. М., Статистическая физика. Часть 1, 2002,с. 54.
  18. Петров Н., Бранков Й., Современные проблемы термодинамики, 1986,с. 10–11.
  19. Müller I., Ruggeri T., Rational Extended Thermodynamics, 1998.
  20. Eu B. C., Generalized Thermodynamics, 2004.
  21. Жоу Д. и др., Расширенная необратимая термодинамика, 2006.
  22. Jou, 2010.
  23. Агеев Е. П.,Неравновесная термодинамика в вопросах и ответах, 2005,с. 49.
  24. 12Соболев С. Л., Локально-неравновесные модели процессов переноса, 1997.
  25. Jou, 2010,p. 32—35.
  26. Дьярмати, 1974,с. 243—249.
  • Eu B. C.Generalized Thermodynamics: The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics. — N. Y. e. a.: Kluwer Academic Publishers, 2004. — (Fundamental Theories of Physics. Vol. 124). —ISBN 1-4020-0788-4.
  • Guggenheim E. A.Thermodynamics: An Advanced Treatment for Chemists and Physicists. — 8th ed. — Amsterdam: North-Holland, 1986. — Т. XXIV. — 390 с.
  • Jou D., Casas-Vázquez J., Lebon G.Extended Irreversible Thermodynamics. — 4th ed. — N. Y.—Dordrecht—Heidelberg—London: Springer, 2010. — Т. XVIII. — 483 с. —ISBN 978-90-481-3073-3.—doi:10.1007/978-90-481-3074-0.
  • Müller I., Ruggeri T.Rational Extended Thermodynamics. — 2nd ed. — N. Y.—Berlin—Heidelberg: Springer, 1998. — Т. XV. — 396 с. — (Springer Tracts in Natural Philosophy. Vol. 37). —ISBN 978-1-4612-7460-5.—doi:10.1007/978-1-4612-2210-1.
  • Noll W.The Foundations of Mechanics and Thermodynamics: Selected Papers. — Berlin — Heidelberg — New York: Springer-Verlag, 1974. — Т. X. — 324 с. —ISBN 978-3-642-65819-8.
  • Truesdell C.The Tragicomical History of Thermodynamics, 1822–1854. — New York — Heidelberg — Berlin: Springer-Verlag, 1980. — Т. XII. — 372 с. — (Studies in the History of Mathematics and Physical Sciences. Vol. 4). —ISBN 978-1-4613-9446-4.
  • Truesdell C., Bharatha S.The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines. — New York — Heidelberg — Berlin: Springer-Verlag, 1977. — Т. XVII. — 154 с. —ISBN 3-540-07971-8.
  • Truesdell C.Rational Thermodynamics. — New York — Berlin — Heidelberg — Tokyo: Springer-Verlag, 1984. — Т. XVIII. — 578 с. —ISBN 0-387-90874-9.
  • Агеев Е. П.Неравновесная термодинамика в вопросах и ответах. — 2-е изд., испр. и доп. —М.:МЦНМО,2005. — 160 с. —ISBN 5-94057-191-3.
  • Боголюбов Н. Н.Собрание научных трудов в 12-ти тт. — М.: Наука, 2006. — Т. 5: Неравновесная статистическая механика, 1939—1980. —ISBN 5-02-034142-8.
  • Бонч-Бруевич В. Л.,Тябликов С. В.«Метод функций Грина в статистической механике.Архивная копияот 8 июня 2008 наWayback Machine» — М., 1961.
  • Гленсдорф П.,Пригожин И. Р.Термодинамическая теория структуры, устойчивости и флуктуаций. — М.: Мир, 1973.
  • Де Гроот С. Р.Термодинамика необратимых процессовАрхивная копияот 12 ноября 2007 наWayback Machine.— М.: Гос. Изд.-во техн.-теор. лит., 1956. 280 с.
  • Де Гроот С., Мазур П.Неравновесная термодинамика. М.: Мир, 1964. 456 с.
  • Гуров К. П.Феноменологическая термодинамика необратимых процессов.— М.: Наука, 1978. 128 с.
  • Дьярмати И.Неравновесная термодинамика. Теория поля и вариационные принципы.— М.: Мир, 1974. 404 с.
  • Жилин П. А.Рациональная механика сплошных сред. — 2-е изд. —СПб.:Изд-во Политехн. ун-та, 2012. — 584 с. —ISBN 978-5-7422-3248-3.
  • Жоу Д., Касас-Баскес Х., Лебон Дж.Расширенная необратимая термодинамика. — М.—Ижевск: НИЦ «Регулярная и хаотическая динамика»; Институт компьютерных исследований, 2006. — 528 с. —ISBN 5-93972-569-4.
  • Зубарев Д. Н.«Неравновесная статистическая термодинамика». — М.: Наука, 1971.
  • Зубарев Д. Н., Морозов В. Г., Рёпке Г.«Статистическая механика неравновесных процессов». Том 1. — М.: Физматлит, 2002.ISBN 5-9221-0211-7.
  • Зубарев Д. Н., Морозов В. Г., Рёпке Г.«Статистическая механика неравновесных процессов». Том 2. — М.: Физматлит, 2002.ISBN 5-9221-0212-5.
  • Ландау Л. Д.,Лифшиц Е. М.Статистическая физика. Часть 1. — 5-е изд. —М.:Физматлит, 2002. — 616 с. — (Теоретическая физика в 10 томах. Том 5). —ISBN 5-9221-0054-8.
  • Петров Н., Бранков Й.Современные проблемы термодинамики. — Пер. с болг. —М.:Мир, 1986. — 287 с.
  • Пригожин И.Введение в термодинамику необратимых процессовАрхивная копияот 15 июня 2006 наWayback Machine— М.: Изд-во иностр. лит-ры, 1960. — 160 c.
  • Пригожин И.Введение в термодинамику необратимых процессов / Пер. с англ. под ред.Н. С. Акулова.— 2-е изд. — М.—Ижевск:Регулярная и хаотическая динамика, 2001. — 160 с. —ISBN 5-93972-036-6.
  • Пригожин И., Кондепуди Д.Современная термодинамика. От тепловых двигателей до диссипативных структур. Пер. с англ. — М.: Мир, 2002. — 461 с.
  • Соболев С. Л.Локально-неравновесные модели процессов переноса//Успехи физических наук.—Российская академия наук,1997. —№ 10.—С. 1095—1106.—doi:10.3367/UFNr.0167.199710f.1095.
  • Стратонович Р. Л.Нелинейная неравновесная термодинамика.Архивная копияот 2 октября 2019 наWayback Machine— М.: Наука, 1985. — 480 с.
  • Трусделл К.Термодинамика для начинающих// Механика. Периодический сборник переводов иностранных статей. — М.: Мир, 1970. —№ 3 (121), с. 116—128.
  • Трусделл К.Первоначальный курс рациональной механики сплошных сред/ Пер. с англ. под. ред. П. А. Жилина и А. И. Лурье. —М.:Мир, 1975. — 592 с.