Radioaktivnost

Izvor: Wikipedija
Prijeđi na navigaciju Prijeđi na pretragu
Znak za opasnost od radioaktivnosti

Radioaktivnostje spontano emitiranje alfa-česticȃ i beta-česticȃ iz tvari, često praćeno i emisijom gama elektromagnetskih valova, pri čemu kemijski elementi prelaze iz jednih u druge te se oslobađa energija u obliku kinetičke energije emitiranih čestica ili energije elektromagnetskih valova a svaka atomska jezgra ima karakterističnovrijeme poluraspada.

U radioaktivnim procesima,elementarne česticeilielektromagnetska zračenjaemitiraju se izjezgri atoma.Najuobičajeniji oblici zračenja tradicionalno se nazivajualfa-čestice(α),beta-čestice(β) igama(γ) zračenjima. Zračenja iz jezgre se događaju i u drugim oblicima, uključujući emitiranjeprotonailineutrona,te spontanihnuklearnih fisija(cijepanja) masivnih jezgri. Od svih jezgri koje su pronađene u prirodi, mnoge su stabilne. To je zbog toga što su se sve kratkoživuće radioaktivne jezgre raspale tokomhistorijeZemlje.U prirodi se nalazi oko 270 stabilnih i oko 50 prirodnih radioaktivnihizotopa.Tisuće drugih radioaktivnih izotopa umjetno su stvarani ulaboratorijima.

Radioaktivni raspad pretvara jednu jezgru u drugu ako nova jezgra ima većuenergiju vezanjaponukleonunego što je imala početna jezgra. Razlika u energiji vezanja (prije i poslije raspada) određuje koji se raspadi mogu energijski događati, a koji ne. Višak će energije vezanja izlaziti u oblikukinetičke energijeili mase čestica u raspadu.[1]

Nuklearni raspadi moraju zadovoljiti nekolikozakona očuvanja energije,podrazumijevajući da vrijednost očuvane veličine nakon raspada (uzimajući u obzir sve produkte) ima jednaku vrijednost kao i za jezgru prije raspada. Očuvane veličine su ukupnaenergija(uključujućiekvivalent energije mase),električni naboj,linearna i kutnakoličina gibanja,brojnukleona,teleptonskibroj (tj. suma brojaelektrona,neutrina,tepozitronai antineutrina, uzimajućiantičestices -1).[2]

Istorija

[uredi|uredi kod]
Henri Becquerelje otkrio prirodnu radioaktivnost

Prirodnu radioaktivnost otkrio jeHenri Becquerel1896.uočivši dauranijevesoliemitiraju nevidljivo zračenje koje djeluje na fotografsku ploču kroz zaštitni papir sličnorendgenskim zrakamate da pod utjecajem toga zračenja elektroskop gubi naboj. Primijetio je da uranijeve soli stalno u mrakufluoresciraju.Tako na primjer, čistikalijevuranil sulfat u mraku stalno svijetli slabom zelenkastomluminiscentnomsvijetlošću. Daljnjim ispitivanjem, Becquerel je pronašao da zračenje koje izazivaju uranijevi spojeviionizirajuzrak (ionizirajuće zračenje), izazivaju fluorescenciju i prolaze krozpapir,pločicealuminijaibakra.Kroz zatvoreni spremnik one djeluju nafotografskuploču, a djeluju i na našukožuikliceraznih biljaka. Utvrdio je da ti zraci imaju slična svojstva kaorendgenske zrake(X – zrake), pa su se u početku te zrake nazivale iBecquerelove zrake.1899. je Becquerel pronašao da te zrake skreću umagnetskom polju,pa se razlikuju od rendgenskih zraka, koje ne skreću u magnetskom polju.[3]

Marie Curie-Skłodowskaotkrila je 1898. takvo zračenje kod torijevih spojeva, te da se na zračenje ne može utjecati električnom strujom, zagrijavanjem, kemijskim reakcijama i sl., da se radioaktivni kemijski elementi pretvaraju jedni u druge i da je vjerojatnost raspada neovisna o starosti pojedinog atoma. Otkrila je da uranijev mineraluraninit(pehblend) emitira pet puta jače zrake nego čistiuranij.Kada je išla istraživati uraninit, pronašla je da se sastoji 75% od uranijevog oksida U3O8,a pronašla je još i neke drugekemijske tvari:PbS, CaO, SiO2,FeO, MgO iBi.1898. je Marie mjerila zračenje pojedinih udjela, pomoću osjetljivogelektroskopa,uz primjenu piezoelektriciteta i ionizacije zraka. Utvrdila je na primjer dabizmut,dobijen iz uraninita, ima 60 puta jače zračenje od čistog uranija. Pronašla je da bizmutovo jako zračenje nastaje uslijed prisustva naznatne količine jednog nepoznatog kemijskog elementa, za koji se kasnije utvrdilo da jeradij.Zato je predložila da se kemijski elementi koji izazivaju Becquerelove zrake nazovuradioaktivni elementi,a njihovo svojstvo radioaktivnost. Tek 1910. je uspjela izdvojiti radij.

Ernest Rutherfordotkrio je 1899. da se zračenjeradijasastoji od dvije komponente koje se različito apsorbiraju u tvarima. Onu vrstu zraka koje ne mogu da prođu krozaluminijskupločicu debljine 0,02mmnazvao jealfa-česticama,a onu vrstu koja je prolazila i kroz deblje slojeve nazvao jebeta-česticama.Na osnovu skretanja u magnetskom polju, utvrdeno je da alfa-čestice imaju pozitivnielektrični naboj,a beta-čestice negativan električni naboj.[4]

Paul Villardje 1900. otkrio još prodorniju komponentu,gama-zrake.Ernest Rutherford iFrederick Soddy(1902.) na temelju analize gibanja zrakâ u magnetskom polju objasnili su prirodu radioaktivnosti.Wolfgang Paulipostavio je 1930. hipotezu o postojanjuneutrina,tadašnjim detektorima neuhvatljive čestice koja odnosi dio energije u beta-raspadu.Enrico Fermipostavio je 1933. prvu strogu teoriju beta-raspada koja pretpostavlja da prijelaz neutrona u proton ili obratno uzrokuje slabo nuklearno međudjelovanje, a pritom dolazi do simultane emisije ili apsorpcijeelektronai neutrina.Irène Joliot-Curiei Frederik Joliot-Curie prvi su 1934. umjetno izazvali radioaktivnost i proizveli umjetniradioizotopstabilnog elementa.

Vrste radioaktivnih raspada

[uredi|uredi kod]
Alfa-zračenje može zaustaviti papir; beta-zračenje može zaustaviti aluminijski lim debeo nekoliko milimetara; a većinu gama-zračenja može zaustaviti desetak centimetara debela olovna ploča.

Alfa raspadpromjena jeatomske jezgrepri kojoj jezgra emitiraalfa-česticu,maseni brojse smanjuje za 4, aatomski brojza 2. Primjerice alfa-raspadomuranija-238 nastajutorij-234 i alfa-čestica.Ernest Rutherfordzaključio da su alfa-čestice ustvariionihelijaili samo atomska jezgra helija.[5]

Beta raspad promjena je atomske jezgre pri kojoj dolazi do emisije ili apsorpcijeelektronaili pozitivnog elektrona (pozitrona) i antineutrina ilineutrina.Pritom semaseni brojne mijenja, aatomski brojelementa promijeni se za jedan. U prirodnim radioaktivnim nizovima pri tzv. beta-minus-raspadu jedanneutronu jezgri raspada se na elektron, antineutrino i proton. Primjerice beta-raspadomtorija-233 nastajupaladij-234, beta-minus-čestica i antineutrino. Prilikom umjetno izazvane radioaktivnosti može doći i do beta-plus-raspada, tj. emisije pozitrona i neutrina; maseni broj elementa ostaje isti, a atomski se broj smanji za jedan.Beta-česticesu ustvari elektroni velikih brzina, ali za razliku od elektrona u elektronskom omotaču atoma, nastaju iz atomske jezgre.

Elektronski uhvatpojava je pri kojoj jezgra zahvati jedan elektron iz atomskog omotača i smanji svoj pozitivni naboj za jedan. Udaljeni elektroni popunjavaju ispražnjena mjesta i pritom dolazi do emisije rendgenskoga zračenja.

Gama-radioaktivnost prijelaz je između stanja više pobuđenosti atomske jezgre u stanje niže pobuđenosti ili u osnovno stanje, a elektromagnetsko zračenje visoke frekvencije koje se pritom emitira naziva segama-zračenje.Tada se ne mijenjaju više atomski ni maseni broj elementa. Za gama-zračenje je utvrđeno da odgovarajutvrdimrendgenskim zrakama.To su dokazaliErnest Rutherfordi E. N. da Costa Andrade 1914.,ogibomili difrakcijom gama-čestica kroz odgovarajućukristalnu rešetku,pomoću koje su uspijeli i odrediti i njihovuvalnu duljinu.Prema dosadašnjim mjerenjima utvrđeno je da su valne duljine gama-čestica između 0,000466nmi 0,0428 nm. Prema tome, gama-čestice odgovaraju kratkovalnom rendgenskom zračenju, ali za razliku od rendgenskog zračenja nastaju uatomskoj jezgri.

Unutarnja konverzija proces je pri kojem jezgra izravno predaje višak energije elektronu u unutarnjim slojevima atomskog omotača. Taj elektron napušta atom, a njegovo izbacivanje prati emisija rendgenskih zraka. Redni i maseni brojevi atoma ne mijenjaju se.

Zračenje nastalo radioaktivnošću razlikuje se po prodornosti, električnom naboju, građi i po procesima koji dovode do emisije. Alfa-zračenje može zaustaviti papir, beta-zračenje može zaustaviti aluminijski lim debeo nekoliko milimetara, a većinu gama-zračenja može zaustaviti desetak centimetara debela olovna ploča. U magnetskom polju alfa-zrake savijaju se kao pozitivno nabijene čestice, beta-zrake kao negativne ili pozitivne, a gama-zrake prolaze nesmetano.

Neutronsko zračenjeje roj brzihneutrona,po masi sličniprotonima.Vrlo lako prodiru kroz nekukemijsku tvar,jer nemajuelektrični naboj.Neutronsko zračenje može biti posljedicanuklearne reakcije.Komponenta jekozmičkog zračenjai zračenja iz nestabilnih teških jezgri. Vrlo snažno neutronsko zračenje nastaje unuklearnim reaktorimatokomnuklearne lančane reakcijejezgri. Energija neutrona kod neutronskih zračenja iznosi od oko 10MeVpa naniže. Ako se energija neutrona smanji na energije manje od 1 eV, nazivaju setermičkim neutronima.

Ostala zračenja se nazivaju prema česticama od kojih se sastoje:protonsko,deuterijsko,tricijsko,teškoionsko, i drugo. Takva zračenja mogu nastati u nuklearnim reakcijama, dio su kozmičkog zračenja, a nastaju i u nuklearnim reaktorima ilinuklearnim eksplozijama.

Podjela radioaktivnih raspada

[uredi|uredi kod]
Vrsta radioaktivnosti Elementarne čestice koje sudjeluju Novi kemijski element
Radioaktvno zračenje s emisijom protona i neutrona:
Alfa raspad Alfa-čestica(A= 4,Z= 2) koja je emitirana iz atomske jezgre (A− 4,Z− 2)
Protonsko zračenje Proton izbačen iz atomske jezgre (A− 1,Z− 1)
Neutronsko zračenje Neutron izbačen iz atomske jezgre (A− 1,Z)
Dvostruko protonsko zračenje Dva protona izbačena iz atomske jezgre istovremeno (A− 2,Z− 2)
Samostalnanuklearna fisija Atomska jezgra se raspada u dvije ili vise manje atomske jezgre i ostale čestice
Teškoionsko zračenje Atomska jezgra zrači određenu vrstu manjih atomskih jezgri (A1,Z1) koje su manje ili veće od alfa-čestica (AA1,ZZ1) + (A1,Z1)
Različiti oblici beta raspada:
Beta-raspad Atomska jezgra zrači elektron i elektronski antineutrino (A,Z+ 1)
Pozitronsko zračenje ili beta+raspad Atomska jezgra zrači pozitron i elektronski antineutrino (A,Z− 1)
Elektronski uhvat Atomska jezgra uhvati elektron iz orbite i zrači neutrino, pa je nova atomska jezgra u pobuđenom i nestabilnom stanju (A,Z− 1)
Ograničeni beta raspad Atomska jezgra zrači elektron i antineutrino, ali elektron bude uhvaćen u praznu K-ljusku; nova atomska jezgra u pobuđenom i nestabilnom stanju. Ta pojava je rijetka, osim kod ioniziranih atoma, koji imaju prazninu u K-ljusci. (A,Z+ 1)
Dvostruki beta raspad Atomska jezgra zrači dva elektrona i dva antineutrina (A,Z+ 2)
Dvostruki elektronski uhvat Atomska jezgra uhvati dva orbitalna elektrona i zrači dva neutrina – nova atomska jezgra u pobuđenom i nestabilnom stanju (A,Z− 2)
Elektronski uhvat sa zračenjem pozitrona Atomska jezgra uhvati orbitalni elektron i zrači poziton i dva neutrina (A,Z− 2)
Dvostruko pozitronsko zračenje Atomska jezgra zrači dva pozitrona i dva antineutrina (A,Z− 2)
Prijelazno stanje istog atomskog jezgra:
Izometarski prijelaz Pobuđena atomska jezgra zrači visokoenergetski foton (gama-zračenje) (A,Z)
Unutarnja pretvorba Pobuđena atomska jezgra prenosi energiju na orbitalni elektron, koji bude izbačen iz atoma (A,Z)

Ionizirajuće zračenje

[uredi|uredi kod]
Alfa-česticesu ustvari ioni helija ili samo atomska jezgra helija.
Beta-česticesu ustvari elektroni velikih brzina, ali za razliku od elektrona u elektronskom omotaču atoma, nastaju iz atomske jezgre
Gama-zračenje odgovara kratkovalnom rendgenskom zračenju, ali za razliku od rendgenskog zračenja nastaje u atomskoj jezgri.

Ionizirajuće zračenjeje pojava za koju ljudska osjetila nisu razvijena, za razliku od mnogih drugih pojava u prirodi. Izravne posljedice djelovanja ionizirajućeg zračenja na živi svijet većinom su zakašnjele i teško ih je povezati s uzrokom. Čovjek može biti izložen i smrtonosnoj dozi ionizirajućeg zračenja, a da u samom trenutku ozračivanja ništa ne osjeti. Posljedice ozračivanja, bez osjetilne veze s uzrokom zapažaju se tek nakon nekog vremena, od nekoliko sati do nekoliko dana ili čak godina, što ovisi o vrsti i svojstvima tog zračenja. Otuda je razumljiv čovjekov strah, a poznavanje osnovnih svojstava ionizirajućeg zračenja, međudjelovanja zračenja s tvari, a posebno djelovanja zračenja na živa bića, je neobično važno u stručnom i psihološkom smislu.

Ionizirajuće zračenje je pojava prijenosaenergijeu oblikufotona(kvanti elektromagnetskog zračenja) ili masenih čestica, a koje ima dovoljno energije da u međudjelovanju s kemijskom tvariioniziratu tvar. Ionizirajuće zračenje posljedica je promjene stanja materije u mikrosvijetu. To su promjene u energiji ili u sastavu atoma ili atomske jezgre, pri čemu se emitiraju fotoni ili druge čestice. U međudjelovanju s tvari dolazi do izmjene energije i izmjene strukture ozračene tvari. Takve posljedice mogu biti korisne, ali i vrlo štetne.[6]

Zakon radioaktivnog raspada

[uredi|uredi kod]

Vjerojatnost da će se pojedinaatomska jezgraraspasti tokom nekog vremenskog intervala ne ovisi o dobi dotične jezgre ili o tome kako je ona stvorena. Iako se stvarno vrijeme života pojedine jezgre ne može predvidjeti, srednje (ili prosječno) vrijeme života nekog uzorka identičnih jezgri može biti izmjereno i predviđeno. Jednostavan način određivanja vremena života nekih izotopa je mjerenje vremena raspada polovice jezgri tog promatranog uzorka. To se vrijeme nazivavremenom poluraspada,t1/2.Od originalnog broja jezgri koje se nisu raspale, njih polovica će se raspasti ako čekamo drugi interval vremena poluraspada pa ih ostaje jedna četvrtina. Za još jedan interval vremena poluraspada ostat će ih samo osmina neraspadnutih, itd.

Broj jezgri nekog uzorka koji će se raspasti u datom vremenskom intervalu je razmjeran broju jezgri tog uzorka. To vodi na zaključak da je proces radioaktivnog raspadaeksponencijalni proces.BrojNatomskih jezgri koje su ostale neraspadnute nakon vremenat,u odnosu na izvorni broj jezgri N0,je:

gdje seλnazivakonstanta radioaktivnog raspadai vrijedi:

a mjerna jedinica je recipročna sekunda, s-1.

Djelovanje radioaktivnog zračenja

[uredi|uredi kod]

Svijet u kojem živimo radioaktivan je od svog postanka. Postoji oko 60radionuklida(radioaktivnih elemenata), koje možemo pronaći u tlu, zraku, vodi, hrani, a time i u svim živim bićima. Po tome kako su nastali dijele se na one koji su oduvijek prisutni naZemlji,one koji nastaju kao posljedica djelovanjakozmičkih zraka,te one koji su posljedica ljudsketehnologije.

U prvoj su skupini radioaktivni elementi poputuranija-235, uranija-238,torija-232,radija-226,radona-222 ilikalija-40. Oni potječu još iz vremena stvaranja Zemlje, a karakterizira ih vrlo dugo vrijeme poluraspada, čak i do milijardu godina (iznimka je plin radon, čiji je poluživot 3,8 dana). Kozmičko zračenje nas neprestano pogađa. Izvor mu je uglavnom izvan našegSunčevog sustava,a sastoji se od raznih oblika zračenja: od vrlo brzih teškihčestica,pa do visokoenergijskihfotonaimiona.Ono međudjeluje s atomima u gornjim slojevima atmosfere i tako proizvodi radionuklide, koji su najčešće kraćih vremena poluživota. To su, na primjer,ugljik-14,tricij,berilij-7 i drugi.

Ljudi su svojim djelovanjem, poglavito razvojemnuklearnih reaktorai testiranjemnuklearnog oružja,stvorili još neke radioaktivne elemente, poputstroncija-90,joda-129, joda-131,cezija-137,plutonija-239 itd.

Mjerne jedinice radioaktivnosti

[uredi|uredi kod]
Kozmičke zrake ili pljusak elementarnih čestica
Ekspozija iznad Hirošime
Jedan sat leta uzrakoplovu,gdje je intenzitet kozmičkog zračenja mnogo veći zbog tanjeg atmosferskog štita no na površini mora, ozrači putnika približno četiri puta više nego cijela nuklearna industrija u godinu dana

Aktivnost radioaktivnog uzorka mjeri se ubekerelima(Bq). Aktivnost od 1 Bq znači jedan radioaktivni raspad u sekundi. Kako su aktivnosti uzoraka često vrlo velike u upotrebi je i veća jedinicakiri(Cu). 1 Cu iznosi 3,7∗ 1010Bq.

Da bi se mjerilaenergija,koju putemionizirajućeg zračenjaapsorbira određena tvar, koristi se jedinicagrej(Gy). Omjer te energije i mase tijela koje ju apsorbira zove seapsorbirana doza.Ako se energija od 1Japsorbira u 1kgtvari govorimo o apsorbiranoj dozi od 1 Gy. Ovako definirana doza ne govori ništa obiološkimučincima apsorbiranog zračenja. Svaka vrsta zračenja (α, β, γ) ima drugačiji utjecaj na žive stanice, koji se opisuje faktorom Q. Zato se definiraekvivalentna doza,koju dobijemo tako da apsorbiranu dozu pomnožimo faktorom Q. Jedinica za ekvivalentnu dozu jesievert(Sv).

Doza zračenja

[uredi|uredi kod]

Zračenje je neizbježan fenomen i svakičovjekprima godišnju ekvivalentnu dozu zračenja od približno 3,5 mSv. To je prosječna doza, a sastoji se od sljedećih doprinosa:

Tako ispada da je ukupna doza od prirodnih izvora 3 mSv, a ukupna doza od umjetnih izvora 0,5 mSv. Ukupna doza od umjetnih izvora proračunata je prema prosječnoj izloženosti medicinskom zračenju, korištenju raznih aparata, te doprinosu od testiranja nuklearnog oružja i rada nuklearnih elektrana. Najveći doprinos od umjetnih izvora daje medicinsko zračenje.

Prosječna doza koju primi stanovništvo u pojedinim dijelovimaHrvatskeod vanjskog ozračivanja:[7]

  • Osijek(najviše): 1,30 mSv/godina
  • Zagreb:1,14 mSv/godina
  • Varaždin:1,10 mSv/godina
  • Rabac(najmanje): 0,66 mSv/godina
  • prosjek: oko 1,00 mSv/godina

Učinci raznih doza zračenja

[uredi|uredi kod]
  • više od 10 Sv izaziva tešku bolest i smrt u nekoliko tjedana.
  • 2-10 Sv primljenih u kratkom roku izaziva smrt s vjerojatnošću od 50%.
  • 1 Sv primljen u kratkom roku izazvao bi radijacijsku bolest (mučninu, gubitak kose), ali najvjerojatnije ne i smrt.
  • 50 mSv godišnje je najmanja doza za koju postoje dokazi da izazivarak.

Učinci velikih doza poznati su iz sudbina preživjelih ljudi izHirošimeiNagasakija,za koje je naknadno procijenjena doza zračenja koju su primili. O učincima malih doza govori se na temelju ekstrapolacije učinaka velikih doza i pretpostavke njihove linearnosti, jer je učinke malih doza teško direktno pratiti i razlučiti od brojnih drugih faktora koji utječu na zdravlje. Na taj je način izračunato da će od milijun ljudi koji prime dodatnu dozu zračenja od 1 mSv njih 50 zbog toga umrijeti od raka.

Umjetna radioaktivnost

[uredi|uredi kod]

Radioaktivne jezgre mogu se dobiti bombardiranjem stabilnih jezgara protonima, alfa-česticama, neutronima itd. Glavni izvor umjetnih radioaktivnih elemenata sunuklearni reaktoriiakceleratori čestica.TokomDrugog svjetskog ratai pedeset godina poslije razvijano jenuklearno oružje.Radioaktivni elementi mogu se dobiti i na umjetan način, npr. tako da se prirodni element bombardira nuklearnim projektilima, protonima, alfa-česticama, neutronima itd., te u njemu izazove nuklearna transmutacija u novi element ili novi izotop istog elementa. Kao projektili za bombardiranje neutroni su jako pogodni jer nemaju naboja i stoga lako prodiru u jezgru atoma.

Izvori radioaktivnih elemenata mogu biti:

  • primjena zračenja umedicini(radiobiologija, nuklearna medicina, radioterapija)
  • pokusne nuklearne eksplozije
  • industrija
  • nuklearne elektrane(zrače manje od televizijskog ekrana)
  • drugi izvori (aparati za radiobiologiju s rendgenskim zrakama ili neutronima, akceleratori čestica)
  1. [1]Arhivirano2017-07-31 naWayback Machine-u"Od rude do žutog kolača", Nuklearna elektrana Krško, 2011.
  2. [2]Arhivirano2017-02-05 naWayback Machine-u"4.1 FIZIKA NEK-a - Fisija", Nuklearna elektrana Krško, e-škola, 2011.
  3. [3]Arhivirano2012-01-01 naWayback Machine-u"Povijest fizike", Ivan Supek, 2011.
  4. [4][mrtav link]"Kemija I", chem.grf.unizg.hr, 2011.
  5. [5][mrtav link]"Uvod u nuklearnu energetiku", Prof. dr. sc. Danilo Feretić, 2011.
  6. [6]Arhivirano2010-07-05 naWayback Machine-u"Ionizirajuće zračenje u biosferi", Nuklearna elektrana Krško, Mile Dželalija, Kemijsko-tehnološki fakultet, Sveučilište u Splitu, 2011.
  7. [7]Arhivirano2012-11-25 naWayback Machine-u"Jedinica radioaktivnosti", www.radiobiologija.vef.unizg.hr, 2011.