Jump to content

Nihonium

From Simple English Wikipedia, the free encyclopedia
Nihonium,00Nh
Nihonium
Pronunciation/nɪˈhniəm/(nih-HOH-nee-əm)
Mass number[286]
Nihonium in theperiodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Tl

Nh

(Uhs)
coperniciumnihoniumflerovium
Groupgroup 13 (boron group)
Periodperiod 7
Blockp-block
Electron configuration[Rn] 5f146d107s27p1(predicted)[1](predicted)
Electrons per shell2, 8, 18, 32, 32, 18, 3(predicted)
Physical properties
PhaseatSTPsolid(predicted)[1][2][3]
Melting point700K​(430 °C, ​810 °F)(predicted)[1]
Boiling point1430 K ​(1130 °C, ​2070 °F)(predicted)[1][4]
Density(nearr.t.)16 g/cm3(predicted)[4]
Heat of fusion7.61kJ/mol(extrapolated)[3]
Heat of vaporization130 kJ/mol(predicted)[2][4]
Atomic properties
Oxidation states(−1), (+1), (+3), (+5)(predicted)[1][5][6]
Ionization energies
  • 1st: 704.9 kJ/mol(predicted)[1]
  • 2nd: 2240 kJ/mol(predicted)[4]
  • 3rd: 3020 kJ/mol(predicted)[4]
  • (more)
Atomic radiusempirical: 170pm(predicted)[1]
Covalent radius172–180 pm(extrapolated)[3]
Other properties
Natural occurrencesynthetic
Crystal structurehexagonal close-packed(hcp)
Hexagonal close-packed crystal structure for nihonium

(extrapolated)[7]
CAS Number54084-70-7
History
NamingAfterJapan(Nihonin Japanese)
DiscoveryRiken(Japan, first undisputed claim 2004)
JINR(Russia) andLivermore(US, first announcement 2003)
Isotopes of nihonium
Main isotopes[8] Decay
abun­dance half-life(t1/2) mode pro­duct
278Nh synth 0.002 s α 274Rg
282Nh synth 0.061 s α 278Rg
283Nh synth 0.123 s α 279Rg
284Nh synth 0.90 s α 280Rg
ε 284Cn
285Nh synth 2.1 s α 281Rg
SF
286Nh synth 9.5 s α 282Rg
287Nh synth 5.5 s?[9] α 283Rg
290Nh synth 2 s?[10] α 286Rg
Category: Nihonium
|references

Nihonium(ニホニウム) is achemical element.It is also namedeka-thallium.It has the symbolNh.It has theatomic number113. It is atransuranium element.The name "nihonium" comes from the name ofJapaninJapanese,Nhật bổn (nihon).

Nihonium does not exist in nature, and can only be madeartificially.It is made from thealpha decayofmoscovium.

There are no known uses for nihonium. What nihonium looks like is not known because not enough has been made to see it with human eyesight. Based on trends in thePeriodic Tableit could be soft, silver color, veryreactivemetal likesodium.

On February 1, 2004, Nihonium andmoscoviumwerediscovered.A team ofRussianscientistsatDubnafrom theJoint Institute for Nuclear ResearchandAmericanscientists at theLawrence Livermore National Laboratoryfirstreportedthe chemical elements.

On September 28, 2004, a team ofJapanesescientists said that they had made the element.[11],[12],[13]

In May 2006, in theJoint Institute for Nuclear Researchmade nihonium using a different method. They found theidentityof the last products of the radioactive decay of the nihonium they made.

Ununtrium was a temporaryIUPACsystematic element namemeaning "one-one-three" in Latin. Scientists from Japan suggested the namejaponium(symbolJp) orrikenium(Rk).[14]However, they picked Nihonium because not only is it discovered in Japan, but it means Japan, too, as Nihon is Japan or Japanese in Japanese.

References

[change|change source]
  1. 1.01.11.21.31.41.51.61.7Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.).The Chemistry of the Actinide and Transactinide Elements(3rd ed.). Dordrecht, The Netherlands:Springer Science+Business Media.ISBN978-1-4020-3555-5.
  2. 2.02.1Seaborg, Glenn T. (c. 2006)."transuranium element (chemical element)".Encyclopædia Britannica.Retrieved2010-03-16.
  3. 3.03.13.2Bonchev, Danail; Kamenska, Verginia (1981)."Predicting the Properties of the 113–120 Transactinide Elements".Journal of Physical Chemistry.85(9): 1177–1186.doi:10.1021/j150609a021.
  4. 4.04.14.24.34.4Fricke, Burkhard (1975)."Superheavy elements: a prediction of their chemical and physical properties".Recent Impact of Physics on Inorganic Chemistry.21:89–144.doi:10.1007/BFb0116498.Retrieved4 October2013.
  5. Fricke, Burkhard (1975)."Superheavy elements: a prediction of their chemical and physical properties".Recent Impact of Physics on Inorganic Chemistry.Structure and Bonding.21:89–144.doi:10.1007/BFb0116498.ISBN978-3-540-07109-9.Retrieved4 October2013.
  6. Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". In Barysz, Maria; Ishikawa, Yasuyuki (eds.).Relativistic Methods for Chemists.Challenges and Advances in Computational Chemistry and Physics. Vol. 10. Springer. pp. 63–67.doi:10.1007/978-1-4020-9975-5_2.ISBN978-1-4020-9974-8.
  7. Keller, O. L., Jr.; Burnett, J. L.; Carlson, T. A.; Nestor, C. W., Jr. (1969). "Predicted Properties of the Super Heavy Elements. I. Elements 113 and 114, Eka-Thallium and Eka-Lead".The Journal of Physical Chemistry.74(5): 1127−1134.doi:10.1021/j100700a029.{{cite journal}}:CS1 maint: multiple names: authors list (link)
  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45(3): 030001.doi:10.1088/1674-1137/abddae.
  9. 9.09.1Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.).Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei.Exotic Nuclei. pp. 155–164.ISBN9789813226555.Cite error: Invalid<ref>tag; name "EXON" defined multiple times with different content
  10. 10.010.1Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Review of even element super-heavy nuclei and search for element 120".The European Physics Journal A.2016(52).doi:10.1140/epja/i2016-16180-4.Cite error: Invalid<ref>tag; name "Hofmann2016" defined multiple times with different content
  11. Moritaet al.,Experiment on the Synthesis of Element 113 in the Reaction209Bi(70Zn, n)278113Archived2007-07-05 at theWayback Machine,J. Phys. Soc. Jpn.Archived2007-07-01 at theWayback Machine,Vol. 73, No.10.
  12. "press release in Japanese".Archived fromthe originalon 2007-03-01.Retrieved2019-01-15.
  13. Japanese scientists create heaviest ever element
  14. Discovering element 113Archived2011-08-12 at theWayback MachineRiken News. Accessed 23 November 2006.

Other websites

[change|change source]