Kuartil
Dinastatistik déskriptif,kuartilnyaéta hiji tina tilu nilai nu ngabagisusunan datakana opat bagéan.
Mangka:
- kuartil kahiji=kuartil handap= motong data sahandapeun 25% =25thpersentil
- kuartil kadua=median= motong satengahna data =50thpersentil
- kuartil katilu=upper quartile= motong data 25% ka luhur, atawa handapeun 75% =75thpercentile
béda antara kuartil luhur jeung handap disebutinterquartile range.
Ilaharna penting keurinterpolasiantara nilai keur ngalengkepan ieu, siga conto di handap ieu.
i x[i]
1 102 2 105 ------------- kuartil kahiji, Q1 = (105+106)/2 = 105.5 3 106 4 109 ------------- kuartil kadua, Q2 = (109+110)/2 = 109.5 5 110 6 112 ------------- kuartil katilu, Q3 = (112+115)/2 = 113.5 7 115 8 118
Nyokot nilai méan sisi séjén tina kuartil mangrupa kaputusan teu pasti: dina conto di luhur, nilai kuartil kudu aya dina rentang [105,106], [109,110] and [112, 115].
If thesample sizeis not a multiple of four, some of the quartiles may be numbers in the original data set, as in this example:
i x[i]
1 102 2 105—Q[1] = 105 3 106 ------------- Q[2] = 107.5 4 109 5 110—Q[3] = 110 6 112
In both of the above cases, the first and third quartiles can be taken to be themedianvalues of the lower and upper halves of the data, respectively. However, there is more than one school of thought on how to apply this definition when the overall median is one of the original data values. The next two examples are illustrations of some of the rules of thumb which have been adopted; neither always produces correct results, and it would be better to use a precise formulation as shown later.
One may include the median in both "halves" of the data:
i x[i]
1 102 2 105 3 106—Q1 = 106 4 109 5 110 )- Q2 = 110 (note line 5 has been duplicated 5 110 to illustrate the point) 6 112 7 115—Q3 = 115 8 118 9 120
Ornotinclude the median in either "half":
i x[i]
1 102 2 105 ------------- Q1 = 105.5 3 106 4 109
5 110—Q2 = 110
6 112 7 115 ------------- Q3 = 116.5 8 118 9 120
More precise mathematical formulations are possible: the quartiles of the distribution of a random variableXcan be defined as the valuesxsuch that:
With these definitions the quartiles in the last example are 106, 110 and 115:
P(X≤ 106) = 1/3 and P(X≥ 106) = 7/9; P(X≤ 110) = 5/9 and P(X≥ 110) = 5/9; and P(X≤ 115) = 7/9 and P(X≥ 115) = 1/3.
See also: