Эчтәлеккә күчү

HMGB1

Wikipedia — ирекле энциклопедия проектыннан ([http://tt.wikipedia.org.ttcysuttlart1999.aylandirow.tmf.org.ru/wiki/HMGB1 latin yazuında])
HMGB1
Нинди таксонда бар H. sapiens[d][1]
Кодлаучы ген HMGB1[d][1]
Молекуляр функция DNA-binding transcription factor activity[d][2],bubble DNA binding[d][3],DNA polymerase binding[d][4],C-X-C chemokine binding[d][5],transcription factor binding[d][2],phosphatidylserine binding[d][6],lipopolysaccharide binding[d][7],активность лиазы[d][4],single-stranded DNA binding[d][3],damaged DNA binding[d][3][4],связывание с белками плазмы[d][8][9][10][…],DNA binding, bending[d][11][11][2],supercoiled DNA binding[d][3],ДНК-связывающий[d][3][3],four-way junction DNA binding[d][3],RAGE receptor binding[d][3],chemoattractant activity[d][3],RNA binding[d][12][13],double-stranded DNA binding[d][11][11],double-stranded RNA binding[d][11],single-stranded RNA binding[d][11],cytokine activity[d][11][11],calcium-dependent protein kinase regulator activity[d][11],protein kinase activator activity[d][11],double-stranded DNA binding[d][3],transcription coactivator activity[d][14],RNA binding[d][15][16],cytokine activity[d][3],integrin binding[d][17],transcription factor binding[d][14][18]һәмDNA binding, bending[d][3][3][14][…]
Күзәнәк компоненты цитоплазма[11][11],эндосома[d][3],мембрана[d][3],transcription repressor complex[d][19],күзәнәк тышындагы өлкә[d][3][3],төш[11][11][11][…],күзәнәк өслеге[d][20],күзәнәк мембранасы[d][3],нуклеоплазма[d][3],Хромосома[3],condensed chromosome[d][21],endoplasmic reticulum-Golgi intermediate compartment[d][3],secretory granule lumen[d][3],ficolin-1-rich granule lumen[d][3],күзәнәк тышындагы мохит[d][11][22],early endosome[d][11],neuron projection[d][11],күзәнәк тышындагы мохит[d][3][20],төш[3][3][3][…],цитоплазма[3][18]һәмAlpha v-beta3 integrin-HMGB1 complex[d][17]
Биологик процесс T-helper 1 cell activation[d][23],apoptotic DNA fragmentation[d][3],adaptive immune response[d][3],regulation of transcription by RNA polymerase II[d][24],positive regulation of DNA ligation[d][3],positive regulation of JNK cascade[d][25],cellular response to DNA damage stimulus[d][3],apoptotic cell clearance[d][6],positive regulation of cysteine-type endopeptidase activity involved in apoptotic process[d][26],positive regulation of toll-like receptor 9 signaling pathway[d][3],negative regulation of RNA polymerase II transcription preinitiation complex assembly[d][27],positive regulation of dendritic cell differentiation[d][28],positive regulation of DNA binding[d][14][9],neuron projection development[d][3],negative regulation of blood vessel endothelial cell migration[d][29],positive regulation of interleukin-12 production[d][28],positive regulation of monocyte chemotaxis[d][5],activation of innate immune response[d][30],DNA ligation involved in DNA repair[d][3],врождённый иммунитет[d][3][3],воспалительная реакция[d][3][31],репарация ДНК[d][3],positive regulation of MAPK cascade[d][25],positive regulation of activated T cell proliferation[d][28],DNA geometric change[d][3],DNA recombination[d][11][11],inflammatory response to antigenic stimulus[d][20],positive regulation of interleukin-10 production[d][23],immune system process[d][3],negative regulation of transcription by RNA polymerase II[d][32],regulation of restriction endodeoxyribonuclease activity[d][4],хемотаксис[d][3],positive regulation of mismatch repair[d][33],negative regulation of CD4-positive, Alpha -beta T cell differentiation[d][23],positive regulation of cytosolic calcium ion concentration[d][5],T-helper 1 cell differentiation[d][28],dendritic cell chemotaxis[d][3],аутофагия[d][3],neutrophil clearance[d][6],V(D)J-рекомбинация[d][34],positive regulation of apoptotic process[d][26],DNA topological change[d][3],positive chemotaxis[d][3],toll-like receptor signaling pathway[d][3],neutrophil degranulation[d][3],күз үсеше[d][11],myeloid dendritic cell activation[d][11][11],positive regulation of protein phosphorylation[d][11],endothelial cell proliferation[d][11],plasmacytoid dendritic cell activation[d][11],macrophage activation involved in immune response[d][11],regulation of tolerance induction[d][11][35],regulation of T cell mediated immune response to tumor cell[d][11][11],base-excision repair[d][11],regulation of autophagy[d][36][11],үпкәләр үсеше[d][11],activation of protein kinase activity[d][11],positive regulation of interferon- Alpha production[d][11],positive regulation of interferon-beta production[d][11],positive regulation of interleukin-6 production[d][11],positive regulation of tumor necrosis factor production[d][11],positive regulation of toll-like receptor 2 signaling pathway[d][11],positive regulation of toll-like receptor 4 signaling pathway[d][11],endothelial cell chemotaxis[d][11],positive regulation of innate immune response[d][11],positive regulation of myeloid cell differentiation[d][11],positive regulation of glycogen catabolic process[d][11],regulation of protein kinase activity[d][11],положительная регуляция транскрипции РНК полимеразой II промотор[d][11][2],response to glucocorticoid[d][11],positive regulation of ERK1 and ERK2 cascade[d][11][37],positive regulation of wound healing[d][11],positive regulation of NIK/NF-kappaB signaling[d][11],positive regulation of sprouting angiogenesis[d][11],negative regulation of apoptotic cell clearance[d][11],regulation of nucleotide-excision repair[d][11],regulation of signaling receptor activity[d][11],negative regulation of transcription by RNA polymerase II[d][19][19],myeloid dendritic cell activation[d][3],activation of innate immune response[d][38][18],regulation of tolerance induction[d][39],regulation of T cell mediated immune response to tumor cell[d][3],DNA recombination[d][3][3][18],ремоделирование хроматина[d][18],regulation of transcription by RNA polymerase II[d][9][18],regulation of signaling receptor activity[d][18],regulation of autophagy[d][40],positive regulation of autophagy[d][18],үсеш процессы[d][18],positive regulation of interleukin-6 production[d][18],positive regulation of tumor necrosis factor production[d][18],positive regulation of blood vessel endothelial cell migration[d][41],positive regulation of innate immune response[d][18],положительная регуляция транскрипции РНК полимеразой II промотор[d][14][18],cell chemotaxis[d][18],positive regulation of ERK1 and ERK2 cascade[d][5][18],cellular response to lipopolysaccharide[d][3],positive regulation of NIK/NF-kappaB signaling[d][18],positive regulation of vascular endothelial cell proliferation[d][41],negative regulation of apoptotic cell clearance[d][17]һәмnegative regulation of interferon-gamma production[d][23]

HMGB1(ингл.) —аксымы,шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[42][43]

  1. 1,01,1UniProt
  2. 2,02,12,22,3Stros M., Polanská E., Struncová S. et al.HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase II Alpha//Nucleic Acids Res.OUP,University of Oxford,2009. — ISSN0305-1048;1362-4962;1362-4954doi:10.1093/NAR/GKP067PMID:19223331
  3. 3,003,013,023,033,043,053,063,073,083,093,103,113,123,133,143,153,163,173,183,193,203,213,223,233,243,253,263,273,283,293,303,313,323,333,343,353,363,373,383,393,403,413,423,433,443,453,463,473,483,493,503,513,52GOA
  4. 4,04,14,24,3Wilson S. H.HMGB1 is a cofactor in mammalian base excision repair//Mol. CellCell Press,Elsevier BV,2007. — ISSN1097-2765;1097-4164doi:10.1016/J.MOLCEL.2007.06.029PMID:17803946
  5. 5,05,15,25,3Venereau E.,Apuzzo T.,Marchis F. D.et al.HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4//J. Exp. Med.Rockefeller University Press,2012. — ISSN0022-1007;1540-9538doi:10.1084/JEM.20111739PMID:22370717
  6. 6,06,16,2Liu G.,Lorne E.High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine//J. Immunol.Baltimore:2008. — ISSN0022-1767;1550-6606doi:10.4049/JIMMUNOL.181.6.4240PMID:18768881
  7. Youn J. H., Kwak M. S., Wu J. et al.Identification of lipopolysaccharide-binding peptide regions within HMGB1 and their effects on subclinical endotoxemia in a mouse model//Eur. J. Immunol.Wiley-Blackwell,2011. — ISSN0014-2980;1521-4141doi:10.1002/EJI.201141391PMID:21660935
  8. Ku W., Chiu S., Chen Y. et al.Complementary quantitative proteomics reveals that transcription factor AP-4 mediates E-box-dependent complex formation for transcriptional repression of HDM2//Mol. Cell. ProteomicsAmerican Society for Biochemistry and Molecular Biology,2009. — ISSN1535-9476;1535-9484doi:10.1074/MCP.M900013-MCP200PMID:19505873
  9. 9,09,19,2Stros M., Ozaki T., Bacikova A. et al.HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter//J. Biol. Chem./L. M. GieraschBaltimore [etc.]:American Society for Biochemistry and Molecular Biology,2002. — ISSN0021-9258;1083-351X;1067-8816doi:10.1074/JBC.M110233200PMID:11748232
  10. L Jayaraman, Moorthy N. C., Murthy K. G. et al.High mobility group protein-1 (HMG-1) is a unique activator of p53//Genes Dev.Cold Spring Harbor Laboratory Press,1998. — ISSN0890-9369;1549-5477doi:10.1101/GAD.12.4.462PMID:9472015
  11. 11,0011,0111,0211,0311,0411,0511,0611,0711,0811,0911,1011,1111,1211,1311,1411,1511,1611,1711,1811,1911,2011,2111,2211,2311,2411,2511,2611,2711,2811,2911,3011,3111,3211,3311,3411,3511,3611,3711,3811,3911,4011,4111,4211,4311,4411,4511,4611,4711,4811,4911,5011,5111,5211,53GOA
  12. Preiss T.,Beckmann B. M.,Humphreys D. T.et al.Insights into RNA biology from an atlas of mammalian mRNA-binding proteins//CellCell Press,Elsevier BV,2012. — ISSN0092-8674;1097-4172doi:10.1016/J.CELL.2012.04.031PMID:22658674
  13. Bonneau R.The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts//Mol. CellCell Press,Elsevier BV,2012. — ISSN1097-2765;1097-4164doi:10.1016/J.MOLCEL.2012.05.021PMID:22681889
  14. 14,014,114,214,314,4Stros M., Polanská E., Struncová S. et al.HMGB1 and HMGB2 proteins up-regulate cellular expression of human topoisomerase II Alpha//Nucleic Acids Res.OUP,University of Oxford,2009. — ISSN0305-1048;1362-4962;1362-4954doi:10.1093/NAR/GKP067PMID:19223331
  15. Bonneau R.The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts//Mol. CellCell Press,Elsevier BV,2012. — ISSN1097-2765;1097-4164doi:10.1016/J.MOLCEL.2012.05.021PMID:22681889
  16. Preiss T.,Beckmann B. M.,Humphreys D. T.et al.Insights into RNA biology from an atlas of mammalian mRNA-binding proteins//CellCell Press,Elsevier BV,2012. — ISSN0092-8674;1097-4172doi:10.1016/J.CELL.2012.04.031PMID:22658674
  17. 17,017,117,2Friggeri A.HMGB1 inhibits macrophage activity in efferocytosis through binding to the Alpha vbeta3-integrin//American Journal of Physiology:Cell Physiology— 2010. — ISSN0363-6143;1522-1563doi:10.1152/AJPCELL.00152.2010PMID:20826760
  18. 18,0018,0118,0218,0318,0418,0518,0618,0718,0818,0918,1018,1118,1218,1318,1418,15Livstone M. S.,Thomas P. D.,Lewis S. E.et al.Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium//Brief. Bioinform.OUP,2011. — ISSN1467-5463;1477-4054doi:10.1093/BIB/BBR042PMID:21873635
  19. 19,019,119,2Gazzar M. E., Yoza B. K., Chen X. et al.Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance//Mol. Cell. Biol.ASM,2009. — ISSN0270-7306;1098-5549;1067-8824doi:10.1128/MCB.01862-08PMID:19158276
  20. 20,020,120,2Kalyan S., Chow A. W.Linking innate and adaptive immunity: human Vgamma9Vdelta2 T cells enhance CD40 expression and HMGB-1 secretion//Mediators of InflammationHindawi Publishing Corporation,2009. — ISSN0962-9351;1466-1861doi:10.1155/2009/819408PMID:19841752
  21. Agresti A.,Bianchi M. E.,Nordmann P.Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB2 with mitotic chromosomes//Mol. Biol. Cell,American Society for Cell Biology,2003. — ISSN1059-1524;1939-4586;1044-2030doi:10.1091/MBC.E02-09-0581PMID:12925773
  22. Kalyan S., Chow A. W.Linking innate and adaptive immunity: human Vgamma9Vdelta2 T cells enhance CD40 expression and HMGB-1 secretion//Mediators of InflammationHindawi Publishing Corporation,2009. — ISSN0962-9351;1466-1861doi:10.1155/2009/819408PMID:19841752
  23. 23,023,123,223,3Wild C. A., Bergmann C., Fritz G. et al.HMGB1 conveys immunosuppressive characteristics on regulatory and conventional T cells//Int. Immunol.OUP,2012. — ISSN0953-8178;1460-2377doi:10.1093/INTIMM/DXS051PMID:22473704
  24. Stros M., Ozaki T., Bacikova A. et al.HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter//J. Biol. Chem./L. M. GieraschBaltimore [etc.]:American Society for Biochemistry and Molecular Biology,2002. — ISSN0021-9258;1083-351X;1067-8816doi:10.1074/JBC.M110233200PMID:11748232
  25. 25,025,1Andersson U.,Moldawer L. L.Structural basis for the proinflammatory cytokine activity of high mobility group box 1//Mol. Med.The Feinstein Institute for Medical Research,BMC,Springer Science+Business Media,2003. — ISSN1076-1551;1528-3658PMID:12765338
  26. 26,026,1Zhu X., Yao Y., Liang H. et al.Effect of high mobility group box-1 protein on apoptosis of peritoneal macrophages//Arch. Biochem. Biophys.Academic Press,Elsevier BV,2009. — ISSN0003-9861;1096-0384doi:10.1016/J.ABB.2009.09.016PMID:19800306
  27. Ge H, RG R.The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein//J. Biol. Chem./L. M. GieraschBaltimore [etc.]:American Society for Biochemistry and Molecular Biology,1994. — ISSN0021-9258;1083-351X;1067-8816PMID:8006019
  28. 28,028,128,228,3Rovere-Querini P.,Nawroth P. P.Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products//J. Immunol.Baltimore:2005. — ISSN0022-1767;1550-6606doi:10.4049/JIMMUNOL.174.12.7506PMID:15944249
  29. Billiar T. R.High mobility group Box 1 inhibits human pulmonary artery endothelial cell migration via a Toll-like receptor 4- and interferon response factor 3-dependent mechanism(s)//J. Biol. Chem./L. M. GieraschBaltimore [etc.]:American Society for Biochemistry and Molecular Biology,2013. — ISSN0021-9258;1083-351X;1067-8816doi:10.1074/JBC.M112.434142PMID:23148224
  30. Wang H.HMGB1-DNA complex-induced autophagy limits AIM2 inflammasome activation through RAGE//Biochem. Biophys. Res. Commun.Academic Press,Elsevier BV,2014. — ISSN0006-291X;1090-2104doi:10.1016/J.BBRC.2014.06.074PMID:24971542
  31. Lee W., Ku S., Kim T. H. et al.Emodin-6-O-β-D-glucoside inhibits HMGB1-induced inflammatory responses in vitro and in vivo//Food Chem. Toxicol./J. L. DomingoElsevier BV,2013. — ISSN0278-6915;1873-6351doi:10.1016/J.FCT.2012.10.061PMID:23146691
  32. Gazzar M. E., Yoza B. K., Chen X. et al.Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance//Mol. Cell. Biol.ASM,2009. — ISSN0270-7306;1098-5549;1067-8824doi:10.1128/MCB.01862-08PMID:19158276
  33. Li G.Evidence for involvement of HMGB1 protein in human DNA mismatch repair//J. Biol. Chem./L. M. GieraschBaltimore [etc.]:American Society for Biochemistry and Molecular Biology,2004. — ISSN0021-9258;1083-351X;1067-8816doi:10.1074/JBC.M401931200PMID:15014079
  34. Nussenzweig M. C.V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA-bending proteins//J. Exp. Med.Rockefeller University Press,1997. — ISSN0022-1007;1540-9538doi:10.1084/JEM.185.11.2025PMID:9166431
  35. Green D. R.Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein//ImmunityCell Press,Elsevier BV,2008. — ISSN1074-7613;1097-4180doi:10.1016/J.IMMUNI.2008.05.013PMID:18631454
  36. Bianchi M. E.,Tracey K. J.,Zeh H. J.et al.Endogenous HMGB1 regulates autophagy//J. Cell Biol./J. NunnariRockefeller University Press,2010. — ISSN0021-9525;1540-8140doi:10.1083/JCB.200911078PMID:20819940
  37. Venereau E.,Apuzzo T.,Marchis F. D.et al.HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4//J. Exp. Med.Rockefeller University Press,2012. — ISSN0022-1007;1540-9538doi:10.1084/JEM.20111739PMID:22370717
  38. Wang H.HMGB1-DNA complex-induced autophagy limits AIM2 inflammasome activation through RAGE//Biochem. Biophys. Res. Commun.Academic Press,Elsevier BV,2014. — ISSN0006-291X;1090-2104doi:10.1016/J.BBRC.2014.06.074PMID:24971542
  39. Green D. R.Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein//ImmunityCell Press,Elsevier BV,2008. — ISSN1074-7613;1097-4180doi:10.1016/J.IMMUNI.2008.05.013PMID:18631454
  40. Bianchi M. E.,Tracey K. J.,Zeh H. J.et al.Endogenous HMGB1 regulates autophagy//J. Cell Biol./J. NunnariRockefeller University Press,2010. — ISSN0021-9525;1540-8140doi:10.1083/JCB.200911078PMID:20819940
  41. 41,041,1Kessler B.,Harris A. L.miR-193a-3p interaction with HMGB1 downregulates human endothelial cell proliferation and migration//Sci. Rep.Macmillan Publishers,NPG,2017. — ISSN2045-2322doi:10.1038/SREP44137PMID:28276476
  42. HUGO Gene Nomenclature Commitee, HGNC:29223(ингл.).әлеге чыганактан2015-10-25 архивланды.18 сентябрь, 2017 тикшерелгән.
  43. UniProt, Q9ULJ7(ингл.).18 сентябрь, 2017 тикшерелгән.
  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука.ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland.ISBN 0815332181.(ингл.)