Bước tới nội dung

Neodymi

Bách khoa toàn thư mở Wikipedia
Neodymi,60Nd
Tính chất chung
Tên,ký hiệuNeodymi, Nd
Phiên âm/ˌn.[invalid input: 'ɵ']ˈdɪmiəm/
NEE-o-DIM-ee-əm
Hình dạngBạc trắng
Neodymi trongbảng tuần hoàn
Hydro (diatomic nonmetal)
Heli (noble gas)
Lithi (alkali metal)
Beryli (alkaline earth metal)
Bor (metalloid)
Carbon (polyatomic nonmetal)
Nitơ (diatomic nonmetal)
Oxy (diatomic nonmetal)
Fluor (diatomic nonmetal)
Neon (noble gas)
Natri (alkali metal)
Magnesi (alkaline earth metal)
Nhôm (post-transition metal)
Silic (metalloid)
Phosphor (polyatomic nonmetal)
Lưu huỳnh (polyatomic nonmetal)
Chlor (diatomic nonmetal)
Argon (noble gas)
Kali (alkali metal)
Calci (alkaline earth metal)
Scandi (transition metal)
Titani (transition metal)
Vanadi (transition metal)
Chrom (transition metal)
Mangan (transition metal)
Sắt (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Đồng (transition metal)
Kẽm (transition metal)
Gali (post-transition metal)
Germani (metalloid)
Arsenic (metalloid)
Seleni (polyatomic nonmetal)
Brom (diatomic nonmetal)
Krypton (noble gas)
Rubidi (alkali metal)
Stronti (alkaline earth metal)
Yttri (transition metal)
Zirconi (transition metal)
Niobi (transition metal)
Molypden (transition metal)
Techneti (transition metal)
Rutheni (transition metal)
Rhodi (transition metal)
Paladi (transition metal)
Bạc (transition metal)
Cadmi (transition metal)
Indi (post-transition metal)
Thiếc (post-transition metal)
Antimon (metalloid)
Teluri (metalloid)
Iod (diatomic nonmetal)
Xenon (noble gas)
Caesi (alkali metal)
Bari (alkaline earth metal)
Lantan (lanthanide)
Ceri (lanthanide)
Praseodymi (lanthanide)
Neodymi (lanthanide)
Promethi (lanthanide)
Samari (lanthanide)
Europi (lanthanide)
Gadolini (lanthanide)
Terbi (lanthanide)
Dysprosi (lanthanide)
Holmi (lanthanide)
Erbi (lanthanide)
Thulium (lanthanide)
Ytterbi (lanthanide)
Luteti (lanthanide)
Hafni (transition metal)
Tantal (transition metal)
Wolfram (transition metal)
Rheni (transition metal)
Osmi (transition metal)
Iridi (transition metal)
Platin (transition metal)
Vàng (transition metal)
Thuỷ ngân (transition metal)
Thali (post-transition metal)
Chì (post-transition metal)
Bismuth (post-transition metal)
Poloni (metalloid)
Astatin (diatomic nonmetal)
Radon (noble gas)
Franci (alkali metal)
Radi (alkaline earth metal)
Actini (actinide)
Thori (actinide)
Protactini (actinide)
Urani (actinide)
Neptuni (actinide)
Plutoni (actinide)
Americi (actinide)
Curium (actinide)
Berkeli (actinide)
Californi (actinide)
Einsteini (actinide)
Fermi (actinide)
Mendelevi (actinide)
Nobeli (actinide)
Lawrenci (actinide)
Rutherfordi (transition metal)
Dubni (transition metal)
Seaborgi (transition metal)
Bohri (transition metal)
Hassi (transition metal)
Meitneri (unknown chemical properties)
Darmstadti (unknown chemical properties)
Roentgeni (unknown chemical properties)
Copernici (transition metal)
Nihoni (unknown chemical properties)
Flerovi (post-transition metal)
Moscovi (unknown chemical properties)
Livermori (unknown chemical properties)
Tennessine (unknown chemical properties)
Oganesson (unknown chemical properties)


Nd

U
PraseodymiNeodymiPromethi
Số nguyên tử(Z)60
Khối lượng nguyên tử chuẩn(Ar)144,242
Phân loạihọ lanthan
Nhóm,phân lớpn/a,f
Chu kỳChu kỳ 6
Cấu hình electron[Xe] 4f46s2
mỗi lớp
2, 8, 18, 22, 8, 2
Tính chất vật lý
Màu sắcBạc trắng
Trạng thái vật chấtChất rắn
Nhiệt độ nóng chảy1297K​(1024 °C, ​1875 °F)
Nhiệt độ sôi3347 K ​(3074 °C, ​5565 °F)
Mật độ7,01g·cm−3(ở 0 °C, 101.325kPa)
Mật độ ở thể lỏngở nhiệt độ nóng chảy: 6,89 g·cm−3
Nhiệt lượng nóng chảy7,14kJ·mol−1
Nhiệt bay hơi289 kJ·mol−1
Nhiệt dung27,45 J·mol−1·K−1
Áp suất hơi
P (Pa) 1 10 100 1 k 10 k 100 k
ở T (K) 1595 1774 1998 (2296) (2715) (3336)
Tính chất nguyên tử
Trạng thái oxy hóa3,2basenhẹ
Độ âm điện1,14 (Thang Pauling)
Năng lượng ion hóaThứ nhất: 533,1 kJ·mol−1
Thứ hai: 1040 kJ·mol−1
Thứ ba: 2130 kJ·mol−1
Bán kính cộng hoá trịthực nghiệm: 181pm
Bán kính liên kết cộng hóa trị201±6 pm
Thông tin khác
Cấu trúc tinh thểLục phương
Cấu trúc tinh thể Lục phương của Neodymi
Vận tốc âm thanhque mỏng: 2330 m·s−1(ở 20 °C)
Độ giãn nở nhiệt(r.t.) (α, poly) 9,6 µm·m−1·K−1
Độ dẫn nhiệt16,5 W·m−1·K−1
Điện trở suất(r.t.) (α, poly) 643 n Ω·m
Tính chất từThuận từ,phản sắt từkhi dưới 20 K[1]
Mô đun Young(dạng α) 41,4 GPa
Mô đun cắt(dạng α) 16,3 GPa
Mô đun khối(dạng α) 31,8 GPa
Hệ số Poisson(dạng α) 0,281
Độ cứng theo thang Vickers343 MPa
Độ cứng theo thang Brinell265 MPa
Số đăng ký CAS7440-00-8
Đồng vị ổn định nhất
Bài chính:Đồng vị của Neodymi
Iso NA Chu kỳ bán rã DM DE(MeV) DP
142Nd 27.2% 142Nd ổn định với 82neutron[2]
143Nd 12.2% 143Nd ổn định với 83neutron[3][4][5]
144Nd 23.8% 2,29×1015năm α 1.905 140Ce
145Nd 8.3% 145Nd ổn định với 85neutron[6][4][5]
146Nd 17.2% 146Nd ổn định với 86neutron[7][4][5]
148Nd 5.7% 148Nd ổn định với 88neutron[8][4][5]
150Nd 5.6% 6,7×1018năm ββ 3.367 150Sm

Neodymi(tênLatinh:Neodymium) là mộtnguyên tố hóa họcvới ký hiệuNdsố nguyên tửbằng 60.

Đặc trưng

[sửa|sửa mã nguồn]

Neodymi, mộtkim loạiđất hiếm,có mặt trong mỏ đất hiếm ở hàm lượng tới khoảng 18%. Kim loại này có ánh kim màu trắng bạc sáng, tuy nhiên, là một trong số các kim loại đất hiếmnhóm Lanthanrất dễ phản ứng hóa học nên nó nhanh chóng bị oxy hóa trong không khí. Lớpoxidetrên bề mặt sau đó dễ bị tách ra làm kim loại này tiếp tục bị oxy hóa. Mặc dù thuộc về nhóm gọi là "kim loại đất hiếm", nhưng neodymi hoàn toàn không hiếm. Nó chiếm khoảng 38ppmkhối lượng lớpvỏ Trái Đất.

Tính hóa học

[sửa|sửa mã nguồn]

Kim loại neodymi bị xỉn từ từ trong không khí và cháy dễ dàng ở nhiệt độ 150 ℃ và tạo thànhneodymi(III) oxide:

4Nd + 3O2→ 2Nd2O3

Neodymi có tính điện dương khá cao, nó phản ứng từ từ với nước lạnh, phản ứng khá nhanh với nước nóng để tảo thànhneodymi(III) hydroxide:

2Nd (r) + 6H2O (l) → 2Nd(OH)3(r) + 3H2(k)

Kim loại neodymi phản ứng với tất cả cáchalogen:

2Nd (r) + 3F2(k) → 2NdF3(r) (màu tím)
2Nd (r) + 3Cl2(k) → 2NdCl3(r) (màu hoa cà)
2Nd (r) + 3Br2(k) → 2NdBr3(r) (màu tím)
2Nd (r) + 3I2(k) → 2NdI3(r) (màu lục)

Neodymi hòa tan dễ dàng trongacid sulfuricloãng để tạo thành dung dịch chứaionNd(III) màu hoa cà, tồn tại dưới dạng phức [Nd(H2O)9]3+:[9]

2Nd (r) + 3H2SO4(dd) → 2Nd3+(dd) + 3SO2−
4
(dd) + 3H2(r)

Các hợp chất

[sửa|sửa mã nguồn]

Neodymi tồn tại ở cáctrạng thái oxy hóa+2, +3, +4. Nd2+có màu lục, Nd3+có màu hồng, còn Nd4+có màu vàng. Dưới đây là danh sách một số hợp chất của neodymi:

Xem thêmBản mẫu: Hợp chất neodymi.

Ứng dụng

[sửa|sửa mã nguồn]
  • Cácnam châm neodymilà cácnam châmvĩnh cửu mạnh nhất hiện đã biết –Nd2Fe14B.Các nam châm này rẻ hơn, nhẹ hơn và mạnh hơn so với cácnam châm samari-coban.Cácnam châm neodymixuất hiện trong các sản phẩm nhưmicrophone,cácloachuyên nghiệp, trongtai nghe,ghi-tavà các đầu cảm biến củaghi-ta basscũng như đầu đọc của ổ đĩa cứngmáy tínhtrong đó cần có khối lượng nhỏ, dung tích bé hay từ trường mạnh.
  • Neodymi là thành phần hợp thành củađidymiđược sử dụng để tạo màu cho thủy tinh dùng làm kính bảo hộ trong nghềhànvà thổi thủy tinh. Dải hấp thụ sắc nét của nó trùng với tần số bức xạ củanatriở bước sóng 589 nm.
  • Neodymi có nhiệt dung riêng lớn bất thường ở ngưỡng nhiệt độ củahelilỏng, vì thế nó là hữu ích trong cácthiết bị siêu lạnh.
  • Các đèn neodymi là các đèn nóng sáng chứa neodymi trong thủy tinh để lọc ánh sáng vàng, tạo ra ánh sáng trắng hơn so với ánh sáng mặt trời.
  • Neodymi tạo màu chothủy tinhvới các sắc thái nằm trong khoảng từ tía tới đỏ rượu vang và xám nóng. Ánh sáng truyền qua thủy tinh như vậy thể hiện cácdải hấp thụsắc nét bất thường; thủy tinh như thế được sử dụng trongthiên văn họcđể tạo ra các dải sắc nét, trong đó cácvạch quang phổcó thể được xác định. Neodymi cũng được sử dụng để loại bỏ màu xanh lục của thủy tinh do các tạp chấtsắtgây ra.
  • Các muối neodymi được dùng như là chất tạo màu chomen thủy tinh.
  • Có lẽ là do các tính chất tương tự như ion Ca2+,nên Nd3+đã được thông báo[10]là hỗ trợ tăng trưởng của thực vật. Các hợp chất của nguyên tố đất hiếm này cũng thường xuyên được sử dụng tại Trung Quốc như làphân bón.
  • Xác định niên đại bằng samari-neodymilà hữu ích để xác định các mối liên hệ về niên đại của các loại đá[11]và củavẫn thạch.
  • Quy mô và cường độ của phun trào núi lửa có thể được dự đoán bằng cách quét cácđồng vịneodymi. Các phun trào núi lửa nhỏ và lớn sinh radung nhamvới thành phần khác nhau về các đồng vị neodymi. Từ thành phần của các đồng vị, các nhà khoa học có thể dự báo sự phun trào sắp xảy ra có thể mạnh ở mức nào và sử dụng thông tin này để cảnh báo dân cư về cường độ của đợt phun trào.
  • Một số vật liệu trong suốt nhất định với hàm lượng nhỏ cácionneodymi có thể được sử dụng trong cáclasernhư làvật liệu lasercho các bước sónghồng ngoại(1.054–1.064 nm), chẳng hạn nhưNd:YAG(thạch lựu ytri nhôm),Nd:YLF(fluoride ytri lithi),Nd:YVO4(orthovanadat ytri), và thủy tinh Nd. Laser hiện thời tạiAtomic Weapons Establishment(AWE) của Vương quốc Anh là laser thủy tinh neodymi HELEN 1-TW, có thể tiếp cận các điểm giữa của các khu vực áp suất và nhiệt độ và được sử dụng để thu được các dữ liệu cho việc lập mô hình về việc tỷ trọng, nhiệt độ và áp suất tương tác như thế nào bên trong các đầu đạn hạt nhân. HELEN có thể tạo ra plasma có nhiệt độ khoảng 106K,mà từ đó độ chắn và sự truyền của nguồn bức xạ được đo đạc.

Thủy tinh neodymi

[sửa|sửa mã nguồn]
Nam châm neodymi trên giá đỡ từổ đĩa cứng.
Các tấm thủy tinh kích thích bằng neodymi được dùng trong các laser cực mạnh củanhiệt hạch hãm quán tính.

Thủy tinh neodymi (thủy tinh Nd) được tạo ra bằng việc đưa vàoneodymi(III) oxide(Nd2O3) trong thủy tinh nóng chảy. Trong ánh sáng ban ngày hay ánh sáng của các đèn nóng sáng thì thủy tinh neodymi có màu tím oải hương, nhưng nó trở thành màu lam nhạt khi được chiếu sáng bằng ánh sáng củađèn huỳnh quang.

Cáclaser trạng thái rắnthủy tinh neodymi được sử dụng trong các hệ thống nhiều tia cực cao công suất (cỡ terawatt), cao năng lượng (cỡmegajoule) chonhiệt hạch hãm quán tính.Các laser thủy tinh Nd thông thường lànhân ba tần sốchohọa ba thứ baở bước sóng 351 nm trong các thiết bị nhiệt hạch laser.

Thủy tinh neodymi được sử dụng rộng rãi trong các đèn nóng sáng để tạo ra ánh sáng "tự nhiên" hơn. Thủy tinh neodymi cũng đã được cấp bằng sáng chế để sử dụng trong các gương chiếu hậu của ô tô để giảm sự chói lòa về ban đêm.

Sử dụng thương mại đầu tiên của neodymi tinh chế là trong tạo màu thủy tinh, bắt đầu với các thực nghiệm của Leo Moser trong tháng 11 năm 1927. Thủy tinh "Alexandrite" được tạo ra vẫn là màu dấu hiệu của các công xưởng thủy tinh Moser cho tới nay. Thủy tinh neodymi được các xưởng thủy tinh tại Mỹ mô phỏng rộng rãi trong đầu thập niên 1930, đáng chú ý nhất có Heisey, Fostoria ( "wisteria" ), Cambridge ( "heatherbloom" ) và Steuben ( "wisteria" ) cũng như ở một vài nơi khác (chẳng hạn Lalique ởPháphay Murano). Thủy tinh "twilight" của Tiffin còn trong sản xuất từ khoảng 1950 tới khoảng 1980. Các nguồn hiện tại bao gồm các nhà sản xuất kính tạiCộng hòa Séc,Hoa KỳTrung Quốc;Caithness Glass ởScotlandcũng sử dụng rộng rãi chất tạo màu này.

Các dải hấp thụ sắc nét của neodymi làm cho màu thủy tinh thay đổi theo các điều kiện chiếu sáng khác nhau, từ có màu tía hơi đỏ dưới ánh sáng ban ngày hay dưới ánh sáng của đèn nóng sáng vàng, nhưng trở thành màu lam dưới ánh sáng trắng của đèn huỳnhg quang, hoặc ánh xanh lục dưới điều kiện chiếu sáng ba màu. Hiện tượng thay đổi màu này được các nhà sưu tập thủy tinh đánh giá cao. Neodymi kết hợp vớipraseodymitạo ra thủy tinh "Heliolite" của Moser. Khi kết hợp vớivànghayseleninó tạo ra màu đỏ đẹp cho thủy tinh, chẳng hạn "Royalite" của Moser hay "Wistaria" của Tiffin hay một số màu khác mà Fenton thu được. Do sự tạo màu của neodymi phụ thuộc vào các sự chuyển tiếp f-f "hãm" sâu bên trong nguyên tử, nên ở đây có ảnh hưởng tương đối ít đối với màu sắc từ môi trường hóa học, vì thé màu là không thấm qua được đối với lịch sử nhiệt của thủy tinh. Tuy nhiên, để có màu tốt nhất, các tạp chất chứasắtcần phải ở mức tối thiểu trongcátđược dùng để nấu thủy tinh. Cùng một "mức hãm" của các chuyển tiếp f-f làm cho các chất tạo màu từ kim loại đất hiếm ít gắt hơn so với các chất tạo màu từ các nguyên tố có chuyển tiếp chủ yếu là lớp d, vì thế cần phải dùng nhiều hơn trong thủy tinh để đạt được cường độ màu mong muốn. Công thức gốc của Moser sử dụng khoảng 5% oxide neodymi trong thủy tinh nóng chảy, một lượng vừa đủ như vậy được Moser nói tới như là thủy tinh "kích thích bằng đất hiếm". Là một base đủ mạnh, mức như vậy của neodymi có thể ảnh hưởng tới các tính chất nóng chảy của thủy tinh và hàm lượngcalcitrong thủy tinh có thể cũng phải điều chỉnh theo.

Neodymi được nam tướcCarl Auer von Welsbach,một nhà hóa học ngườiÁo,phát hiện tạiViênnăm 1885. Ông tách neodymi cũng như nguyên tốpraseodymitừ vật liệu được gọi làdidymibằng cách kết tinh phân đoạn của nitrat amoni tetrahydrat kép từacid nitric,trong khi tuân theo việc chia tách bằng phân tíchquang phổ;tuy nhiên, nó đã không được cô lập ở dạng tương đối tinh khiết cho tới tận năm 1925. Tên gọi neodymi có nguồn gốc từtiếng Hy Lạpneosnghĩa là mới vàdidymosnghĩa là kép, đôi.

Kết tinh nitrat kép từng là phương thức tinh chế neodymi thương mại cho tới tận thập niên 1950. Lindsay Chemical Division của American Potash and Chemical Corporation, một thời từng là nhà sản xuất các kim loại đất hiếm lớn nhất trên thế giới, cung cấp oxide neodymi tinh chế theo kiểu này ở phẩm cấp 65%, 85% và 95% độ tinh khiết, với mức giá trong khoảng từ 2 tới 20 USD mỗi pao (USD năm 1960). Lindsay cũng là cơ sở đầu tiên thương mại hóa quá trình tinh chế bằngtrao đổi ionở quy mô lớn để sản xuất neodymi, sử dụng công nghệ do Frank Spedding tại Đại học bang Iowa và Phòng thí nghiệm Ames phát triển; một pao oxide độ tinh khiết 99% có giá 35 USD vào năm 1960; còn phẩm cấp 99,9% chỉ tăng thêm 5 USD nữa. Bắt đầu từ thập niên 1950, neodymi độ tinh khiết cao (như 99+%) chủ yếu thu được bằng công nghệtrao đổi iontừ cátmonazit((Ce,La,Th,Nd,Y)PO4), một vật liệu giàu các nguyên tố đất hiếm. Bản thân kim loại này thu được bằngđiện phâncác muối halide của nó. Hiện tại, phần lớn neodymi được chiết ra từbastnaesit,(Ce,La,Nd,Pr)CO3F, và được tinh chế bằng chiếtdung môi.Tinh chế trao đổi ion được dùng để điều chế neodymi với các độ tinh khiết cao hơn (thông thường > 4 N, do khi Molycorp lần đầu tiên đưa ra oxide neodymi của họ có phẩm cấp 98% vào năm 1965, điều chế bằng chiết dung môi từ bastnaesit thu được tại mỏMountain Pass, California,nó chỉ có giá ở mức 5 USD mỗi pao đối với các lượng nhỏ, do vậy Lindsay nhanh chóng ngừng không sản xuất nữa). Công nghệ phát triển và độ tinh khiết được nâng cao của oxide neodymi có sẵn ở quy mô công nghiệp được phản ánh bằng sự xuất hiện của thủy tinh neodymi được làm từ đó vẫn tồn tại trong các bộ sưu tập ngày nay. Các miếng kính thời kỳ đầu của Moser và các loại thủy tinh neodymi khác sản xuất trong thập niên 1930 bị pha màu cam hay hơi đỏ nhiều hơn so với các loại thủy tinh neodymi ngày nay (có màu tía thuần khiết hơn), do các khó khăn trong việc loại bỏ các dấu vết cuối cùng của praseodymi khi người ta còn phải dựa vào công nghệ kết tinh phân đoạn.

Phổ biến

[sửa|sửa mã nguồn]

Neodymi không được tìm thấy trong tự nhiên ở dạng nguyên tố tự do mà nó thường xuất hiện trong các loại quặng như cátmonazit((Ce,La,Th,Nd,Y)PO4) vàbastnasit((Ce,La,Th,Nd,Y)(CO3)F) trong đó chứa các lượng nhỏ của mọi nguyên tố đất hiếm. Neodymi cũng có thể tìm thấy trongmisch metal;nó rất khó tách ra từ các nguyên tố đất hiếm khác.

Đồng vị

[sửa|sửa mã nguồn]

Neodymi phổ biến trong tự nhiên là hợp thành của 5đồng vịổn định, bao gồm Nd142,Nd143,Nd145,Nd146và Nd148,với Nd142là phổ biến nhất (27,2%), và 2đồng vị phóng xạlà Nd144và Nd150.Tổng cộng 31 đồng vị phóng xạ của neodymi đã được nêu đặc trưng cho tới nay, với ổn định nhất là các đồng vị có trong tự nhiên Nd144(phân rã Alphavớichu kỳ bán rã(T½) bằng 2,29×1015năm) và Nd150(phân rã beta kép,T½bằng 7×1018năm). Tất cả các đồng vị phóng xạ còn lại có chu kỳ bán rã nhỏ hơn 11 ngày và phần lớn trong số đó có chu kỳ bán rã nhỏ hơn 70 giây. Nguyên tố này cũng có 13 trạng tháigiả ổn địnhđã biết với ổn định nhất là Nd139m(T½bằng 5,5 giờ), Nd135m(T½bằng 5,5 phút) và Nd133m1(T½≈ 70 giây).

Phương thức phân rãchủ yếu trước đồng vị phổ biến nhất (Nd142) làbắt điện tửphân rã positroncòn phương thức chủ yếu sau đồng vị ổn định phổ biến nhất làphân rã beta trừ.Sản phẩm phân rãchủ yếu trước Nd142là các đồng vị của nguyên tố Pr (praseodymi) còn sản phẩm phân rã chủ yếu sau Nd142là các đồng vị của nguyên tố Pm (prometi).

Phòng ngừa

[sửa|sửa mã nguồn]

Bụi của neodymi kim loại có nguy hiểm cháy và nổ.

Các hợp chất của neodymi, giống như các muối của mọi kim loại đất hiếm khác, có độc tính từ nhẹ tới vừa phải; tuy nhiên độc tính của chúng vẫn chưa được nghiên cứu đầy đủ. Bụi neodymi và các muối của nó kích ứng mạnh đối với mắt và cácmàng nhầyvà kích ứng vừa phải đối với da. Hít thở phải bụi có thể gây ra tắc mạchphổivà sự phơi nhiễm tích tụ gây nguy hiểm chogan.Neodymi cũng đóng vai trò như là tác nhân chống đông máu, đặc biệt là khi truyền vào theo đường ven.

Các nam châm neodymi đã được thử nghiệm để sử dụng trong y học, chẳng hạn như các vòng từ tính và chỉnh sửa xương, nhưng các vấn đề vềtương thích sinh họcđã không cho phép các ứng dụng này được phổ biến.

  1. ^Gschneidner, K. A.; Eyring, L. (1978).Handbook on the Physics and Chemistry of Rare Earths.Amsterdam: North Holland.ISBN0444850228.
  2. ^Về mặt lý thuyết có khả năngphân hạch tự phát.
  3. ^Được cho là trải qua quá trìnhphân rã Alphathành139Cevớichu kỳ bán rãhơn3,1×1018năm.
  4. ^abcdKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).“The NUBASE2020 evaluation of nuclear properties”(PDF).Chinese Physics C.45(3): 030001.doi:10.1088/1674-1137/abddae.
  5. ^abcdBelli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). “Experimental searches for rare Alpha and beta decays”.European Physical Journal A.55(140): 4–6.arXiv:1908.11458.Bibcode:2019EPJA...55..140B.doi:10.1140/epja/i2019-12823-2.S2CID201664098.
  6. ^Được cho là trải qua quá trìnhphân rã Alphathành141Cevới chu kỳ bán rã hơn6×1016năm.
  7. ^Được cho là trải qua phân rãββthành146Smhoặcphân rã Alphathành142Cevớichu kỳ bán rãhơn1,6×1018năm.
  8. ^Được cho là trải qua phân rãββthành148Smhoặcphân rã Alpha144Cevớichu kỳ bán rãhơn 3,0×1018năm.
  9. ^“Chemical reactions of Neodymium”.Webelements.Truy cập ngày 6 tháng 6 năm 2009.
  10. ^regional.org.au
  11. ^news.bbc.co.uk

Liên kết ngoài

[sửa|sửa mã nguồn]