VIAF

Virtual International Authority File

Search

Leader 00000nz a2200037n 45 0
001 WKP|Q43168447 (VIAF cluster) (Authority/Source Record)
003 WKP
005 20241020233023.0
008 241020nneanz||abbn n and d
035 ‎‡a (WKP)Q43168447‏
024 ‎‡a 0000-0001-8042-7642‏ ‎‡2 orcid‏
024 ‎‡a 7402461003‏ ‎‡2 scopus‏
035 ‎‡a (OCoLC)Q43168447‏
100 0 ‎‡a Jorge Costa‏ ‎‡c researcher (ORCID 0000-0001-8042-7642)‏ ‎‡9 en‏
375 ‎‡a 1‏ ‎‡2 iso5218‏
400 0 ‎‡a Jorge Costa‏ ‎‡c onderzoeker‏ ‎‡9 nl‏
670 ‎‡a Author's A new biomaterial of nanofibers with the microalga Spirulina as scaffolds to cultivate with stem cells for use in tissue engineering.‏
670 ‎‡a Author's Application of Static Magnetic Fields on the Mixotrophic Culture of Chlorella minutissima for Carbohydrate Production‏
670 ‎‡a Author's Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor‏
670 ‎‡a Author's Biofunctionalized nanofibers using Arthrospira (Spirulina) biomass and biopolymer‏
670 ‎‡a Author's Biological CO2 mitigation by microalgae: technological trends, future prospects and challenges‏
670 ‎‡a Author's Biological effects of Spirulina‏
670 ‎‡a Author's Biological effects of Spirulina (Arthrospira) biopolymers and biomass in the development of nanostructured scaffolds‏
670 ‎‡a Author's Biologically Active Metabolites Synthesized by Microalgae‏
670 ‎‡a Author's Biomolecule concentrations increase in Chlorella fusca LEB 111 cultured using chemical absorbents and nutrient reuse‏
670 ‎‡a Author's Bioprocess Engineering Aspects of Biopolymer Production by the CyanobacteriumSpirulinaStrain LEB 18‏
670 ‎‡a Author's Bioprocess strategies for enhancing biomolecules productivity in Chlorella fusca LEB 111 using CO2 a carbon source‏
670 ‎‡a Author's Brackish Groundwater from Brazilian Backlands in Spirulina Cultures: Potential of Carbohydrate and Polyunsaturated Fatty Acid Production‏
670 ‎‡a Author's Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors.‏
670 ‎‡a Author's Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle‏
670 ‎‡a Author's Chemical modification and structural analysis of protein isolates to produce hydrogel using Whitemouth croaker (Micropogonias furnieri) wastes‏
670 ‎‡a Author's CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin‏
670 ‎‡a Author's Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content‏
670 ‎‡a Author's Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity‏
670 ‎‡a Author's Development of pH indicator from PLA/PEO ultrafine fibers containing pigment of microalgae origin‏
670 ‎‡a Author's Effect of an active biodegradable package made from bean flour and açaí seed extract on the quality of olive oil‏
670 ‎‡a Author's Effect of microalga Spirulina platensis‏
670 ‎‡a Author's Effect of microalga Spirulina platensis (Arthrospira platensis) on hippocampus lipoperoxidation and lipid profile in rats with induced hypercholesterolemia‏
670 ‎‡a Author's Enhancement of the carbohydrate content in Spirulina by applying CO2, thermoelectric fly ashes and reduced nitrogen supply‏
670 ‎‡a Author's Enzymatic Saccharification of Lignocellulosic Residues by Cellulases Obtained from Solid State Fermentation Using Trichoderma viride‏
670 ‎‡a Author's Erratum to: CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin‏
670 ‎‡a Author's Fatty Acid Biosynthesis from Chlorella in Autotrophic and Mixotrophic Cultivation‏
670 ‎‡a Author's Improving Spirulina platensis biomass yield using a fed-batch process‏
670 ‎‡a Author's Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate.‏
670 ‎‡a Author's Innovative development of membrane sparger for carbon dioxide supply in microalgae cultures‏
670 ‎‡a Author's Magnetic field as promoter of growth in outdoor and indoor assays of Chlorella fusca‏
670 ‎‡a Author's Microalgae biosynthesis of silver nanoparticles for application in the control of agricultural pathogens‏
670 ‎‡a Author's Nanoencapsulation of the Bioactive Compounds of Spirulina with a Microalgal Biopolymer Coating‏
670 ‎‡a Author's Optimization of glucoamylase production by Aspergillus niger in solid-state fermentation‏
670 ‎‡a Author's Optimization of phycocyanin extraction from Spirulina platensis using factorial design‏
670 ‎‡a Author's Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: A novel nanomaterial with antibacterial activity.‏
670 ‎‡a Author's Potential of Live Spirulina platensis on Biosorption of Hexavalent Chromium and Its Conversion to Trivalent Chromium.‏
670 ‎‡a Author's Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development‏
670 ‎‡a Author's Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation.‏
670 ‎‡a Author's Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes.‏
670 ‎‡a Author's Production of Nanofibers Containing the Bioactive Compound C-Phycocyanin.‏
670 ‎‡a Author's Scaffolds Containing Spirulina sp. LEB 18 Biomass: Development, Characterization and Evaluation of In Vitro Biodegradation‏
670 ‎‡a Author's Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses‏
670 ‎‡a Author's Spirulina cultivation with a CO2 absorbent: Influence on growth parameters and macromolecule production.‏
670 ‎‡a Author's Spirulina platensis biomass composition is influenced by the light availability and harvest phase in raceway ponds‏
670 ‎‡a Author's Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity.‏
670 ‎‡a Author's The role of biochemical engineering in the production of biofuels from microalgae‏
670 ‎‡a Author's Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation‏
670 ‎‡a Author's Vertical tubular photobioreactor for semicontinuous culture of Cyanobium sp‏
670 ‎‡a wikidata authority control‏ ‎‡u https://viaf.org/processed/DNB|1229516875‏
670 ‎‡a wikidata authority control‏ ‎‡u https://viaf.org/viaf/2753161634375110850002‏
909 ‎‡a (orcid) 0000000180427642‏ ‎‡9 1‏
909 ‎‡a (scopus) 7402461003‏ ‎‡9 1‏
919 ‎‡a scaffoldscontainingspirulinaspleb18biomassdevelopmentcharacterizationandevaluationofinvitrobiodegradation‏ ‎‡A Scaffolds Containing Spirulina sp. LEB 18 Biomass: Development, Characterization and Evaluation of In Vitro Biodegradation‏ ‎‡9 1‏
919 ‎‡a spirulinacultivationwithaco2absorbentinfluenceongrowthparametersandmacromoleculeproduction‏ ‎‡A Spirulina cultivation with a CO2 absorbent: Influence on growth parameters and macromolecule production.‏ ‎‡9 1‏
919 ‎‡a spirulinaplatensisbiomasscompositionisinfluencedbythelightavailabilityandharvestphaseinracewayponds‏ ‎‡A Spirulina platensis biomass composition is influenced by the light availability and harvest phase in raceway ponds‏ ‎‡9 1‏
919 ‎‡a spirulinaplatensisismoreefficientthanchlorellahomosphaeraincarbohydrateproductivity‏ ‎‡A Spirulina platensis is more efficient than Chlorella homosphaera in carbohydrate productivity.‏ ‎‡9 1‏
919 ‎‡a roleofbiochemicalengineeringintheproductionofbiofuelsfrommicroalgae‏ ‎‡A The role of biochemical engineering in the production of biofuels from microalgae‏ ‎‡9 1‏
919 ‎‡a utilizationofsimulatedfluegascontainingco2so2noandashforchlorellafuscacultivation‏ ‎‡A Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation‏ ‎‡9 1‏
919 ‎‡a verticaltubularphotobioreactorforsemicontinuouscultureofcyanobiumsp‏ ‎‡A Vertical tubular photobioreactor for semicontinuous culture of Cyanobium sp‏ ‎‡9 1‏
919 ‎‡a simultaneousproductionoflipasesandbiosurfactantsbysubmergedandsolidstatebioprocesses‏ ‎‡A Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses‏ ‎‡9 1‏
919 ‎‡a newbiomaterialofnanofiberswiththemicroalgaspirulinaasscaffoldstocultivatewithstemcellsforuseintissueengineering‏ ‎‡A A new biomaterial of nanofibers with the microalga Spirulina as scaffolds to cultivate with stem cells for use in tissue engineering.‏ ‎‡9 1‏
919 ‎‡a applicationofstaticmagneticfieldsonthemixotrophiccultureofchlorellaminutissimaforcarbohydrateproduction‏ ‎‡A Application of Static Magnetic Fields on the Mixotrophic Culture of Chlorella minutissima for Carbohydrate Production‏ ‎‡9 1‏
919 ‎‡a biofixationofcarbondioxidebyspirulinaspandscenedesmusobliquuscultivatedina3stageserialtubularphotobioreactor‏ ‎‡A Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor‏ ‎‡9 1‏
919 ‎‡a biofunctionalizednanofibersusingarthrospiraspirulinabiomassandbiopolymer‏ ‎‡A Biofunctionalized nanofibers using Arthrospira (Spirulina) biomass and biopolymer‏ ‎‡9 1‏
919 ‎‡a biologicalco2mitigationbymicroalgaetechnologicaltrendsfutureprospectsandchallenges‏ ‎‡A Biological CO2 mitigation by microalgae: technological trends, future prospects and challenges‏ ‎‡9 1‏
919 ‎‡a biologicaleffectsofspirulina‏ ‎‡A Biological effects of Spirulina‏ ‎‡9 1‏
919 ‎‡a biologicaleffectsofspirulinaarthrospirabiopolymersandbiomassinthedevelopmentofnanostructuredscaffolds‏ ‎‡A Biological effects of Spirulina (Arthrospira) biopolymers and biomass in the development of nanostructured scaffolds‏ ‎‡9 1‏
919 ‎‡a biologicallyactivemetabolitessynthesizedbymicroalgae‏ ‎‡A Biologically Active Metabolites Synthesized by Microalgae‏ ‎‡9 1‏
919 ‎‡a biomoleculeconcentrationsincreaseinchlorellafuscaleb111culturedusingchemicalabsorbentsandnutrientreuse‏ ‎‡A Biomolecule concentrations increase in Chlorella fusca LEB 111 cultured using chemical absorbents and nutrient reuse‏ ‎‡9 1‏
919 ‎‡a bioprocessengineeringaspectsofbiopolymerproductionbythecyanobacteriumspirulinastrainleb18‏ ‎‡A Bioprocess Engineering Aspects of Biopolymer Production by the CyanobacteriumSpirulinaStrain LEB 18‏ ‎‡9 1‏
919 ‎‡a bioprocessstrategiesforenhancingbiomoleculesproductivityinchlorellafuscaleb111usingco2acarbonsource‏ ‎‡A Bioprocess strategies for enhancing biomolecules productivity in Chlorella fusca LEB 111 using CO2 a carbon source‏ ‎‡9 1‏
919 ‎‡a brackishgroundwaterfrombrazilianbacklandsinspirulinaculturespotentialofcarbohydrateandpolyunsaturatedfattyacidproduction‏ ‎‡A Brackish Groundwater from Brazilian Backlands in Spirulina Cultures: Potential of Carbohydrate and Polyunsaturated Fatty Acid Production‏ ‎‡9 1‏
919 ‎‡a carbondioxidefixationbychlorellakessleri100vulgarisscenedesmusobliquusandspirulinaspcultivatedinflasksandverticaltubularphotobioreactors‏ ‎‡A Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors.‏ ‎‡9 1‏
919 ‎‡a chemicalabsorptionandco2biofixationviathecultivationofspirulinainsemicontinuousmodewithnutrientrecycle‏ ‎‡A Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle‏ ‎‡9 1‏
919 ‎‡a chemicalmodificationandstructuralanalysisofproteinisolatestoproducehydrogelusingwhitemouthcroakermicropogoniasfurnieriwastes‏ ‎‡A Chemical modification and structural analysis of protein isolates to produce hydrogel using Whitemouth croaker (Micropogonias furnieri) wastes‏ ‎‡9 1‏
919 ‎‡a co2biofixationbythecyanobacteriumspirulinaspleb18andthegreenalgachlorellafuscaleb111grownusinggaseffluentsandsolidresiduesofthermoelectricorigin‏ ‎‡A CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin‏ ‎‡9 1‏
919 ‎‡a cultivationofdifferentmicroalgaewithpentoseascarbonsourceandtheeffectsonthecarbohydratecontent‏ ‎‡A Cultivation of different microalgae with pentose as carbon source and the effects on the carbohydrate content‏ ‎‡9 1‏
919 ‎‡a developmentofelectrospunnanofiberscontainingchitosanpeoblendandphenoliccompoundswithantibacterialactivity‏ ‎‡A Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity‏ ‎‡9 1‏
919 ‎‡a developmentofphindicatorfromplapeoultrafinefiberscontainingpigmentofmicroalgaeorigin‏ ‎‡A Development of pH indicator from PLA/PEO ultrafine fibers containing pigment of microalgae origin‏ ‎‡9 1‏
919 ‎‡a effectofanactivebiodegradablepackagemadefrombeanflourandacaiseedextractonthequalityofoliveoil‏ ‎‡A Effect of an active biodegradable package made from bean flour and açaí seed extract on the quality of olive oil‏ ‎‡9 1‏
919 ‎‡a effectofmicroalgaspirulinaplatensis‏ ‎‡A Effect of microalga Spirulina platensis‏ ‎‡9 1‏
919 ‎‡a effectofmicroalgaspirulinaplatensisarthrospiraplatensisonhippocampuslipoperoxidationandlipidprofileinratswithinducedhypercholesterolemia‏ ‎‡A Effect of microalga Spirulina platensis (Arthrospira platensis) on hippocampus lipoperoxidation and lipid profile in rats with induced hypercholesterolemia‏ ‎‡9 1‏
919 ‎‡a enhancementofthecarbohydratecontentinspirulinabyapplyingco2thermoelectricflyashesandreducednitrogensupply‏ ‎‡A Enhancement of the carbohydrate content in Spirulina by applying CO2, thermoelectric fly ashes and reduced nitrogen supply‏ ‎‡9 1‏
919 ‎‡a enzymaticsaccharificationoflignocellulosicresiduesbycellulasesobtainedfromsolidstatefermentationusingtrichodermaviride‏ ‎‡A Enzymatic Saccharification of Lignocellulosic Residues by Cellulases Obtained from Solid State Fermentation Using Trichoderma viride‏ ‎‡9 1‏
919 ‎‡a erratumtoco2biofixationbythecyanobacteriumspirulinaspleb18andthegreenalgachlorellafuscaleb111grownusinggaseffluentsandsolidresiduesofthermoelectricorigin‏ ‎‡A Erratum to: CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin‏ ‎‡9 1‏
919 ‎‡a fattyacidbiosynthesisfromchlorellainautotrophicandmixotrophiccultivation‏ ‎‡A Fatty Acid Biosynthesis from Chlorella in Autotrophic and Mixotrophic Cultivation‏ ‎‡9 1‏
919 ‎‡a improvingspirulinaplatensisbiomassyieldusingafedbatchprocess‏ ‎‡A Improving Spirulina platensis biomass yield using a fed-batch process‏ ‎‡9 1‏
919 ‎‡a increaseinthecarbohydratecontentofthemicroalgaespirulinainculturebynutrientstarvationandtheadditionofresiduesofwheyproteinconcentrate‏ ‎‡A Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate.‏ ‎‡9 1‏
919 ‎‡a innovativedevelopmentofmembranespargerforcarbondioxidesupplyinmicroalgaecultures‏ ‎‡A Innovative development of membrane sparger for carbon dioxide supply in microalgae cultures‏ ‎‡9 1‏
919 ‎‡a magneticfieldaspromoterofgrowthinoutdoorandindoorassaysofchlorellafusca‏ ‎‡A Magnetic field as promoter of growth in outdoor and indoor assays of Chlorella fusca‏ ‎‡9 1‏
919 ‎‡a microalgaebiosynthesisofsilvernanoparticlesforapplicationinthecontrolofagriculturalpathogens‏ ‎‡A Microalgae biosynthesis of silver nanoparticles for application in the control of agricultural pathogens‏ ‎‡9 1‏
919 ‎‡a nanoencapsulationofthebioactivecompoundsofspirulinawithamicroalgalbiopolymercoating‏ ‎‡A Nanoencapsulation of the Bioactive Compounds of Spirulina with a Microalgal Biopolymer Coating‏ ‎‡9 1‏
919 ‎‡a optimizationofglucoamylaseproductionbyaspergillusnigerinsolidstatefermentation‏ ‎‡A Optimization of glucoamylase production by Aspergillus niger in solid-state fermentation‏ ‎‡9 1‏
919 ‎‡a optimizationofphycocyaninextractionfromspirulinaplatensisusingfactorialdesign‏ ‎‡A Optimization of phycocyanin extraction from Spirulina platensis using factorial design‏ ‎‡9 1‏
919 ‎‡a polyhydroxybutyrateandphenoliccompoundsmicroalgaeelectrospunnanofibersanovelnanomaterialwithantibacterialactivity‏ ‎‡A Polyhydroxybutyrate and phenolic compounds microalgae electrospun nanofibers: A novel nanomaterial with antibacterial activity.‏ ‎‡9 1‏
919 ‎‡a potentialoflivespirulinaplatensisonbiosorptionofhexavalentchromiumanditsconversiontotrivalentchromium‏ ‎‡A Potential of Live Spirulina platensis on Biosorption of Hexavalent Chromium and Its Conversion to Trivalent Chromium.‏ ‎‡9 1‏
919 ‎‡a potentialofmicroalgaeasbiopesticidestocontributetosustainableagricultureandenvironmentaldevelopment‏ ‎‡A Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development‏ ‎‡9 1‏
919 ‎‡a productionandcharacterizationoflipasesby2newisolatesofaspergillusthroughsolidstateandsubmergedfermentation‏ ‎‡A Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation.‏ ‎‡9 1‏
919 ‎‡a productionofbiomassandnutraceuticalcompoundsbyspirulinaplatensisunderdifferenttemperatureandnitrogenregimes‏ ‎‡A Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes.‏ ‎‡9 1‏
919 ‎‡a productionofnanofiberscontainingthebioactivecompound100phycocyanin‏ ‎‡A Production of Nanofibers Containing the Bioactive Compound C-Phycocyanin.‏ ‎‡9 1‏
946 ‎‡a b‏ ‎‡9 1‏
996 ‎‡2 SUDOC|029080061
996 ‎‡2 BNC|981061162843506706
996 ‎‡2 LC|no 96061481
996 ‎‡2 ISNI|0000000070632426
996 ‎‡2 ISNI|0000000000129921
996 ‎‡2 KRNLK|KAC202186290
996 ‎‡2 LC|n 81113894
996 ‎‡2 JPG|500235806
996 ‎‡2 ISNI|0000000140178784
996 ‎‡2 PTBNP|1159611
996 ‎‡2 ISNI|0000000067687020
996 ‎‡2 BIBSYS|6062784
996 ‎‡2 BLBNB|000167557
996 ‎‡2 BNC|981061059374006706
996 ‎‡2 PTBNP|1753183
996 ‎‡2 PTBNP|1840654
996 ‎‡2 ISNI|0000000118519589
996 ‎‡2 BNE|XX6252986
996 ‎‡2 NTA|135589231
996 ‎‡2 ISNI|000000000266280X
996 ‎‡2 PTBNP|1395042
996 ‎‡2 CAOONL|ncf10684614
996 ‎‡2 LC|nb 91533090
996 ‎‡2 PTBNP|401352
996 ‎‡2 SUDOC|270470557
996 ‎‡2 ISNI|0000000070090858
996 ‎‡2 RERO|A003137875
996 ‎‡2 BAV|495_62439
996 ‎‡2 BAV|495_62437
996 ‎‡2 PTBNP|138185
996 ‎‡2 ISNI|0000000449846904
996 ‎‡2 BLBNB|000212295
996 ‎‡2 NSK|000330364
996 ‎‡2 LC|nb2007014526
996 ‎‡2 BLBNB|000596280
996 ‎‡2 PTBNP|1864661
996 ‎‡2 ICCU|LO1V470783
996 ‎‡2 DNB|1075072328
996 ‎‡2 SUDOC|160190118
996 ‎‡2 CAOONL|ncf10728578
996 ‎‡2 LC|no2007144572
996 ‎‡2 RERO|A003138021
996 ‎‡2 PTBNP|229504
996 ‎‡2 ISNI|0000000392110321
996 ‎‡2 ISNI|0000000091504079
996 ‎‡2 ISNI|0000000044988824
996 ‎‡2 DNB|1256132306
996 ‎‡2 PTBNP|1295933
996 ‎‡2 ISNI|0000000068210443
996 ‎‡2 PTBNP|221736
996 ‎‡2 ISNI|0000000068912138
996 ‎‡2 DNB|1181001617
996 ‎‡2 PTBNP|216748
996 ‎‡2 LC|n 2009045031
996 ‎‡2 PTBNP|52326
996 ‎‡2 ISNI|0000000055167888
996 ‎‡2 PTBNP|964465
996 ‎‡2 BNE|XX5119117
996 ‎‡2 J9U|987007367284805171
996 ‎‡2 BLBNB|000167227
996 ‎‡2 BLBNB|000481998
996 ‎‡2 KRNLK|KAC202307665
996 ‎‡2 BLBNB|000167229
996 ‎‡2 LC|n 99261723
996 ‎‡2 BLBNB|000391714
996 ‎‡2 NYNYRILM|195278
996 ‎‡2 BLBNB|000250824
996 ‎‡2 DNB|105731062X
996 ‎‡2 BNF|15744629
996 ‎‡2 ISNI|0000000070307631
996 ‎‡2 NTA|073458384
996 ‎‡2 ISNI|0000000083101106
996 ‎‡2 LC|no2013123999
996 ‎‡2 BIBSYS|54373
996 ‎‡2 PTBNP|254610
996 ‎‡2 LC|ns2012005099
996 ‎‡2 NUKAT|n 99031046
996 ‎‡2 PTBNP|44090
996 ‎‡2 DNB|171226003
996 ‎‡2 ISNI|0000000066328907
996 ‎‡2 ISNI|0000000068311690
996 ‎‡2 ISNI|0000000070826052
996 ‎‡2 DNB|1215212798
996 ‎‡2 PTBNP|270206
996 ‎‡2 PTBNP|214900
996 ‎‡2 LC|no2011040512
996 ‎‡2 ISNI|000000010794247X
996 ‎‡2 SUDOC|253756480
996 ‎‡2 ISNI|0000000068705921
996 ‎‡2 PTBNP|1107995
996 ‎‡2 ISNI|0000000385969891
996 ‎‡2 PTBNP|1276313
996 ‎‡2 PTBNP|252351
996 ‎‡2 SUDOC|143216015
996 ‎‡2 PTBNP|254920
996 ‎‡2 ISNI|0000000115980281
996 ‎‡2 SUDOC|076189813
996 ‎‡2 SUDOC|152934855
996 ‎‡2 LC|no2006077751
996 ‎‡2 ISNI|0000000069295784
996 ‎‡2 BNF|11897791
996 ‎‡2 PTBNP|52364
996 ‎‡2 NTA|172300436
996 ‎‡2 ISNI|0000000373513133
996 ‎‡2 SUDOC|13364605X
996 ‎‡2 PTBNP|1839349
996 ‎‡2 ISNI|0000000070991699
996 ‎‡2 LC|nr 95028903
996 ‎‡2 NUKAT|n 2017024291
996 ‎‡2 PTBNP|1900360
996 ‎‡2 LC|n 2006211971
996 ‎‡2 SUDOC|112218377
996 ‎‡2 ISNI|0000000032406495
996 ‎‡2 SUDOC|028457536
996 ‎‡2 BLBNB|000542878
996 ‎‡2 LC|n 2007026994
996 ‎‡2 ISNI|0000000430740050
996 ‎‡2 PTBNP|27936
996 ‎‡2 PTBNP|1459251
996 ‎‡2 ISNI|0000000109973886
996 ‎‡2 DNB|1126207454
996 ‎‡2 ISNI|0000000390139462
996 ‎‡2 PTBNP|1859927
996 ‎‡2 ISNI|0000000070827397
996 ‎‡2 BNC|981058514195406706
996 ‎‡2 J9U|987007461006405171
996 ‎‡2 DNB|1140920944
996 ‎‡2 SUDOC|108152383
996 ‎‡2 ISNI|0000000068109513
996 ‎‡2 CAOONL|ncf10646015
996 ‎‡2 BLBNB|000470240
996 ‎‡2 BLBNB|000524040
996 ‎‡2 PTBNP|243911
996 ‎‡2 SUDOC|261585010
996 ‎‡2 PTBNP|52536
996 ‎‡2 PLWABN|9812829357905606
996 ‎‡2 LC|n 94065306
996 ‎‡2 LC|n 2010061333
996 ‎‡2 PTBNP|1691929
996 ‎‡2 ISNI|0000000060116612
996 ‎‡2 ISNI|000000038594458X
996 ‎‡2 ISNI|0000000010935951
996 ‎‡2 LC|n 2014205532
996 ‎‡2 BAV|495_150204
996 ‎‡2 BNC|981058516534806706
996 ‎‡2 RERO|A005821695
996 ‎‡2 ISNI|0000000068420328
996 ‎‡2 KRNLK|KAC2019F4581
996 ‎‡2 ISNI|0000000021796555
996 ‎‡2 BNF|12456389
996 ‎‡2 BNC|981058617435306706
996 ‎‡2 PTBNP|709918
996 ‎‡2 LC|no2009118834
996 ‎‡2 PTBNP|1000281
996 ‎‡2 DNB|119357674
996 ‎‡2 RERO|A005543147
996 ‎‡2 SUDOC|06721911X
996 ‎‡2 DNB|133364615
996 ‎‡2 ISNI|0000000070926328
996 ‎‡2 SUDOC|032484909
996 ‎‡2 ISNI|0000000072718549
996 ‎‡2 DNB|116689099
996 ‎‡2 BNC|981058527398806706
996 ‎‡2 LC|n 88005447
996 ‎‡2 PTBNP|1302322
996 ‎‡2 BNE|XX1667113
996 ‎‡2 NKC|xx0223280
996 ‎‡2 NUKAT|n 2014190006
996 ‎‡2 LC|n 2024000229
996 ‎‡2 LC|no2016016451
996 ‎‡2 PTBNP|1007607
996 ‎‡2 ISNI|0000000069313313
996 ‎‡2 ICCU|CFIV061419
996 ‎‡2 ISNI|0000000434631513
996 ‎‡2 RERO|A027397206
996 ‎‡2 ISNI|0000000070631554
996 ‎‡2 ISNI|0000000073687676
996 ‎‡2 BLBNB|000389001
996 ‎‡2 ISNI|0000000459753015
996 ‎‡2 SUDOC|23481604X
996 ‎‡2 PTBNP|52592
996 ‎‡2 BNE|XX5774918
996 ‎‡2 ISNI|0000000073092090
996 ‎‡2 ISNI|0000000073256470
996 ‎‡2 ISNI|0000000059367561
996 ‎‡2 ISNI|0000000107866235
996 ‎‡2 LC|nb2012022318
996 ‎‡2 ISNI|0000000067458949
996 ‎‡2 ISNI|0000000069190683
996 ‎‡2 PTBNP|187097
996 ‎‡2 DNB|1041661517
996 ‎‡2 SUDOC|186080298
996 ‎‡2 ISNI|0000000069921423
996 ‎‡2 ISNI|0000000032002319
996 ‎‡2 PTBNP|52697
996 ‎‡2 ISNI|0000000068793263
996 ‎‡2 PTBNP|1602993
996 ‎‡2 BNC|981061110236606706
996 ‎‡2 BNC|981061113927406706
996 ‎‡2 PTBNP|84086
996 ‎‡2 ISNI|0000000070941632
996 ‎‡2 LC|nb2013023158
996 ‎‡2 LC|no2010006260
996 ‎‡2 BNE|XX1004745
996 ‎‡2 B2Q|0000102325
996 ‎‡2 PTBNP|280719
996 ‎‡2 LC|n 2017250964
996 ‎‡2 PTBNP|1181305
996 ‎‡2 PTBNP|80835
996 ‎‡2 SUDOC|033451818
996 ‎‡2 PTBNP|192475
996 ‎‡2 PTBNP|42591
996 ‎‡2 PTBNP|1299025
996 ‎‡2 PTBNP|1590173
996 ‎‡2 PTBNP|1908310
996 ‎‡2 ISNI|000000008008294X
996 ‎‡2 PTBNP|152968
996 ‎‡2 DNB|1150244453
996 ‎‡2 ISNI|0000000066509230
996 ‎‡2 CAOONL|ncf10106043
996 ‎‡2 NYNYRILM|149362
996 ‎‡2 PTBNP|52359
996 ‎‡2 DNB|1264083246
996 ‎‡2 ISNI|0000000068304968
996 ‎‡2 NII|DA05830843
996 ‎‡2 BNF|18167419
996 ‎‡2 ISNI|0000000068105600
996 ‎‡2 BLBNB|000203469
996 ‎‡2 SUDOC|188553746
996 ‎‡2 SUDOC|085782955
996 ‎‡2 ISNI|0000000068715484
996 ‎‡2 BLBNB|000404078
996 ‎‡2 NTA|080086535
996 ‎‡2 PTBNP|1441484
996 ‎‡2 PTBNP|83759
996 ‎‡2 BAV|495_343599
996 ‎‡2 ISNI|0000000068314824
996 ‎‡2 ISNI|0000000418620697
996 ‎‡2 PTBNP|186858
996 ‎‡2 ICCU|CUBV169558
996 ‎‡2 BLBNB|001536774
996 ‎‡2 BNF|15114413
996 ‎‡2 DNB|188355553
996 ‎‡2 BNC|981058608718506706
996 ‎‡2 DNB|101128586X
996 ‎‡2 BLBNB|000606595
996 ‎‡2 BNE|XX6517160
996 ‎‡2 PTBNP|187030
996 ‎‡2 SUDOC|238253538
996 ‎‡2 BIBSYS|90296684
997 ‎‡a 0 0 lived 0 0‏ ‎‡9 1‏
998 ‎‡a Costa, Jorge Alberto Vieira‏ ‎‡2 DNB|1229516875‏ ‎‡3 suggested‏ ‎‡3 standard number‏