VIAF

Virtual International Authority File

Search

Leader 00000nz a2200037n 45 0
001 WKP|Q64729413 (VIAF cluster) (Authority/Source Record)
003 WKP
005 20241221010725.0
008 241221nneanz||abbn n and d
035 ‎‡a (WKP)Q64729413‏
024 ‎‡a 0000-0003-1507-1613‏ ‎‡2 orcid‏
035 ‎‡a (OCoLC)Q64729413‏
100 0 ‎‡a Michael Green‏ ‎‡9 nl‏ ‎‡9 it‏ ‎‡9 ast‏
375 ‎‡a 1‏ ‎‡2 iso5218‏
400 0 ‎‡a মাইকেল গ্রিন‏ ‎‡9 bn‏
400 0 ‎‡a Michael Green‏ ‎‡c researcher (business intelligence) in Copenhagen‏ ‎‡9 en‏
670 ‎‡a Author's An artificial neural network to safely reduce the number of ambulance ECGs transmitted for physician assessment in a system with prehospital detection of ST elevation myocardial infarction.‏
670 ‎‡a Author's Comments on 'Practical experiences on the necessity of external validation'.‏
670 ‎‡a Author's Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room.‏
670 ‎‡a Author's Exploring new possibilities for case-based explanation of artificial neural network ensembles.‏
670 ‎‡a Author's In search of the best method to predict acute coronary syndrome using only the electrocardiogram from the emergency department.‏
909 ‎‡a (orcid) 0000000315071613‏ ‎‡9 1‏
919 ‎‡a artificialneuralnetworktosafelyreducethenumberofambulanceecgstransmittedforphysicianassessmentinasystemwithprehospitaldetectionofstelevationmyocardialinfarction‏ ‎‡A An artificial neural network to safely reduce the number of ambulance ECGs transmitted for physician assessment in a system with prehospital detection of ST elevation myocardial infarction.‏ ‎‡9 1‏
919 ‎‡a exploringnewpossibilitiesforcasebasedexplanationofartificialneuralnetworkensembles‏ ‎‡A Exploring new possibilities for case-based explanation of artificial neural network ensembles.‏ ‎‡9 1‏
919 ‎‡a commentsonpracticalexperiencesonthenecessityofexternalvalidation‏ ‎‡A Comments on 'Practical experiences on the necessity of external validation'.‏ ‎‡9 1‏
919 ‎‡a insearchofthebestmethodtopredictacutecoronarysyndromeusingonlytheelectrocardiogramfromtheemergencydepartment‏ ‎‡A In search of the best method to predict acute coronary syndrome using only the electrocardiogram from the emergency department.‏ ‎‡9 1‏
919 ‎‡a comparisonbetweenneuralnetworksandmultiplelogisticregressiontopredictacutecoronarysyndromeintheemergencyroom‏ ‎‡A Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room.‏ ‎‡9 1‏
946 ‎‡a b‏ ‎‡9 1‏
996 ‎‡2 LC|n 88620173
996 ‎‡2 BNC|981058517849106706
996 ‎‡2 LC|n 2004043589
996 ‎‡2 BIBSYS|1070576
996 ‎‡2 ISNI|0000000382668268
996 ‎‡2 LIH|LNB:DP_t_H;=B_m_
996 ‎‡2 NII|DA16325467
996 ‎‡2 ISNI|0000000362889514
996 ‎‡2 PLWABN|9810575170805606
996 ‎‡2 ISNI|0000000114967624
996 ‎‡2 ISNI|0000000382329442
996 ‎‡2 DNB|1081038462
996 ‎‡2 BIBSYS|14041719
996 ‎‡2 SUDOC|229252788
996 ‎‡2 SUDOC|190920211
996 ‎‡2 LIH|LNB:DR_c__w_;=CA
996 ‎‡2 LNB|LNC10-000185941
996 ‎‡2 SELIBR|318085
996 ‎‡2 DNB|1075563399
996 ‎‡2 LC|n 2008031087
996 ‎‡2 CAOONL|ncf12140454
996 ‎‡2 LC|nr2001011745
996 ‎‡2 LC|n 79119640
996 ‎‡2 J9U|987007416691305171
996 ‎‡2 ISNI|0000000451848204
996 ‎‡2 BNF|12169870
996 ‎‡2 BIBSYS|90142054
996 ‎‡2 LC|no2015041855
996 ‎‡2 LC|no2017141884
996 ‎‡2 LC|n 82038941
996 ‎‡2 BNC|981058509808006706
996 ‎‡2 ISNI|0000000114525068
996 ‎‡2 CAOONL|ncf11238590
996 ‎‡2 RERO|A003317193
996 ‎‡2 ISNI|0000000115860028
996 ‎‡2 NUKAT|n 2014065932
996 ‎‡2 BIBSYS|1606126541503
996 ‎‡2 ISNI|0000000107834815
996 ‎‡2 NSK|000041442
996 ‎‡2 J9U|987007442418705171
996 ‎‡2 DNB|170067807
996 ‎‡2 PLWABN|9813295533805606
996 ‎‡2 ISNI|0000000038621890
996 ‎‡2 LC|n 2009029167
996 ‎‡2 J9U|987007337608905171
996 ‎‡2 NTA|228167876
996 ‎‡2 PLWABN|9813664095605606
996 ‎‡2 LC|no2024116180
996 ‎‡2 ISNI|0000000077686435
996 ‎‡2 NDL|01144566
996 ‎‡2 BNF|16697354
996 ‎‡2 LC|n 2010180151
996 ‎‡2 BIBSYS|1615358753182
996 ‎‡2 PLWABN|9811714591405606
996 ‎‡2 NII|DA10590920
996 ‎‡2 NKC|mub2012728124
996 ‎‡2 J9U|987007424974005171
996 ‎‡2 LC|no2001040228
996 ‎‡2 NLA|000035461880
996 ‎‡2 DNB|1029358206
996 ‎‡2 SZ|1074764161
996 ‎‡2 ISNI|0000000109395406
996 ‎‡2 DNB|1074764161
996 ‎‡2 J9U|987012330262205171
996 ‎‡2 LC|no2006018716
996 ‎‡2 LC|n 50030457
996 ‎‡2 ISNI|0000000049291241
996 ‎‡2 DNB|1153517450
996 ‎‡2 SUDOC|156631857
996 ‎‡2 ISNI|000000007569903X
996 ‎‡2 NII|DA00341103
996 ‎‡2 LC|no2010007848
996 ‎‡2 CAOONL|ncf10995110
996 ‎‡2 RERO|A029006894
996 ‎‡2 BLBNB|000223939
996 ‎‡2 J9U|987007580662405171
996 ‎‡2 BNC|981058508591006706
996 ‎‡2 DNB|1024045439
996 ‎‡2 LC|no2024023917
996 ‎‡2 CAOONL|ncf10697853
996 ‎‡2 J9U|987007436061105171
996 ‎‡2 ISNI|0000000110042616
996 ‎‡2 SUDOC|033654204
996 ‎‡2 BIBSYS|12041180
996 ‎‡2 LC|no2008072767
996 ‎‡2 RERO|A027296306
996 ‎‡2 ISNI|0000000012516793
996 ‎‡2 NTA|100375979
996 ‎‡2 J9U|987012679132605171
996 ‎‡2 DNB|1037812875
996 ‎‡2 ISNI|0000000063283539
996 ‎‡2 CAOONL|ncf11916659
996 ‎‡2 NUKAT|n 2010040322
996 ‎‡2 NUKAT|nx2023701711
996 ‎‡2 LC|n 85346191
996 ‎‡2 SUDOC|272832286
996 ‎‡2 LC|n 77018144
996 ‎‡2 BIBSYS|90907008
996 ‎‡2 LC|nb2016010566
996 ‎‡2 SUDOC|030240212
996 ‎‡2 ERRR|a12514184
996 ‎‡2 ISNI|0000000029353900
996 ‎‡2 LC|n 98028870
996 ‎‡2 J9U|987007314157205171
996 ‎‡2 CAOONL|ncf12118835
996 ‎‡2 J9U|987007421889205171
996 ‎‡2 NTA|278592171
996 ‎‡2 DNB|17349966X
996 ‎‡2 BNF|16644844
996 ‎‡2 LC|n 2006042165
996 ‎‡2 LC|no 97063141
996 ‎‡2 SUDOC|273576992
996 ‎‡2 NII|DA00957905
996 ‎‡2 J9U|987007385879405171
996 ‎‡2 LC|no2023111396
996 ‎‡2 PLWABN|9810580564805606
996 ‎‡2 BIBSYS|4083892
996 ‎‡2 ISNI|0000000035953507
996 ‎‡2 BNE|XX1132289
996 ‎‡2 J9U|987007404131505171
996 ‎‡2 BIBSYS|90576894
996 ‎‡2 ISNI|0000000073985649
996 ‎‡2 ISNI|0000000368374327
996 ‎‡2 LC|n 87879600
996 ‎‡2 DNB|139004815
996 ‎‡2 ISNI|0000000021669388
996 ‎‡2 CAOONL|ncf11365814
996 ‎‡2 NUKAT|n 96302217
996 ‎‡2 JPG|500227173
996 ‎‡2 SUDOC|236146211
996 ‎‡2 N6I|vtls000065732
996 ‎‡2 LC|n 97802215
996 ‎‡2 BIBSYS|99049071
996 ‎‡2 DNB|1038389704
996 ‎‡2 LC|n 82031482
996 ‎‡2 NTA|301062749
996 ‎‡2 DNB|1214755739
996 ‎‡2 J9U|987007368515005171
996 ‎‡2 CAOONL|ncf10535774
996 ‎‡2 NTA|177043172
996 ‎‡2 NTA|314435468
996 ‎‡2 BIBSYS|1479731350324
996 ‎‡2 LC|no2013075634
996 ‎‡2 CAOONL|ncf11362928
996 ‎‡2 NUKAT|n 2011142615
996 ‎‡2 SUDOC|253355222
996 ‎‡2 NKC|ntk2017973046
996 ‎‡2 DNB|143341510
996 ‎‡2 NUKAT|n 98020766
996 ‎‡2 LC|nb2012000725
996 ‎‡2 NTA|086230050
996 ‎‡2 SUDOC|147900980
996 ‎‡2 NUKAT|n 2012073179
996 ‎‡2 DNB|142070246
996 ‎‡2 SZ|1123737649
996 ‎‡2 BNF|14183221
996 ‎‡2 DNB|1276052006
996 ‎‡2 NDL|001163109
996 ‎‡2 SUDOC|268067201
996 ‎‡2 ISNI|0000000033466051
996 ‎‡2 NTA|412601656
996 ‎‡2 BNF|17733347
996 ‎‡2 NTA|158239075
996 ‎‡2 LC|n 2009180711
996 ‎‡2 DNB|134862902
996 ‎‡2 SUDOC|198608977
996 ‎‡2 J9U|987007370712605171
996 ‎‡2 RERO|A003317168
996 ‎‡2 LC|n 2002151567
996 ‎‡2 ISNI|0000000122108395
996 ‎‡2 LC|nb2008013806
996 ‎‡2 J9U|987007328491405171
996 ‎‡2 DNB|129799130
996 ‎‡2 SUDOC|035215208
996 ‎‡2 ISNI|0000000109177214
996 ‎‡2 BNF|12015006
996 ‎‡2 NUKAT|n 2021088295
996 ‎‡2 LC|n 84167170
996 ‎‡2 NUKAT|n 2012045194
996 ‎‡2 LC|no2017001212
996 ‎‡2 NUKAT|n 2010131761
996 ‎‡2 LIH|LNB:CP_g__o_;=B5
996 ‎‡2 NII|DA10225812
996 ‎‡2 SUDOC|176952489
996 ‎‡2 LC|n 2005055550
996 ‎‡2 BIBSYS|90247386
996 ‎‡2 SUDOC|155255614
996 ‎‡2 NDL|01010885
996 ‎‡2 LC|no2018104483
996 ‎‡2 BNF|15013498
996 ‎‡2 NKC|jo20241234048
996 ‎‡2 W2Z|1606126541503
996 ‎‡2 DNB|1102371475
996 ‎‡2 ISNI|0000000074946211
996 ‎‡2 LC|no2017158739
996 ‎‡2 ISNI|0000000033461656
996 ‎‡2 SUDOC|153560770
996 ‎‡2 ISNI|0000000116533686
996 ‎‡2 ISNI|0000000031045384
996 ‎‡2 BIBSYS|11069314
996 ‎‡2 LIH|LNB:C8_i_J;=BU
996 ‎‡2 NKC|utb20191022941
996 ‎‡2 SUDOC|196164591
996 ‎‡2 DNB|102688750X
996 ‎‡2 DNB|1043690360
996 ‎‡2 LC|nr 94024111
996 ‎‡2 BIBSYS|90285431
996 ‎‡2 ISNI|0000000074545274
996 ‎‡2 LC|n 50037335
996 ‎‡2 NTA|357500881
996 ‎‡2 LIH|LNB:7O_y_;=B_l_
996 ‎‡2 SUDOC|232750890
996 ‎‡2 NKC|skuk0002749
996 ‎‡2 ISNI|0000000109352043
996 ‎‡2 NTA|357198034
996 ‎‡2 LC|n 94109114
996 ‎‡2 ISNI|0000000114488703
996 ‎‡2 ISNI|0000000074208550
996 ‎‡2 DNB|1064732852
996 ‎‡2 LC|n 2016063819
996 ‎‡2 BNC|981061239949106706
996 ‎‡2 RERO|A011075209
996 ‎‡2 J9U|987007372181605171
996 ‎‡2 LC|nb 98088454
996 ‎‡2 ISNI|0000000486055335
996 ‎‡2 PLWABN|9810637545405606
996 ‎‡2 RERO|A026796205
996 ‎‡2 ISNI|0000000500364741
996 ‎‡2 NTA|381984478
996 ‎‡2 PLWABN|9810562822305606
996 ‎‡2 ISNI|0000000031185643
996 ‎‡2 BNF|13630698
996 ‎‡2 BNF|15557655
996 ‎‡2 BNF|13950531
996 ‎‡2 LC|n 95084045
996 ‎‡2 NKC|ola2015876238
996 ‎‡2 NTA|392148056
996 ‎‡2 LC|n 2004105632
996 ‎‡2 LC|n 96031681
996 ‎‡2 J9U|987007281436005171
996 ‎‡2 BNF|12401943
996 ‎‡2 DNB|1108821871
996 ‎‡2 BNE|XX5236436
996 ‎‡2 BIBSYS|1634281492757
996 ‎‡2 DBC|87097938801686
996 ‎‡2 SUDOC|276937600
996 ‎‡2 LC|no2001081104
996 ‎‡2 NTA|291928420
996 ‎‡2 J9U|987007456350805171
996 ‎‡2 BNF|12449904
997 ‎‡a 0 0 lived 0 0‏ ‎‡9 1‏
998 ‎‡a Green, M.A.‏ ‎‡2 ISNI|0000000114373340‏ ‎‡3 exact name‏
998 ‎‡a Green, Michael‏ ‎‡2 ISNI|0000000114373340‏ ‎‡3 exact name‏
998 ‎‡a Green, Michael‏ ‎‡c professeur de russe‏ ‎‡2 ISNI|0000000114373340‏ ‎‡3 exact name‏
998 ‎‡a Green, Michael A.‏ ‎‡2 ISNI|0000000114373340‏ ‎‡3 exact name‏
998 ‎‡a Michael Green‏ ‎‡2 ISNI|0000000114373340‏ ‎‡3 exact name‏