VIAF

Virtual International Authority File

Search

Leader     00000nz a2200037n 45 0
001     WKP|Q57000244  (VIAF cluster)  (Authority/Source Record)
003     WKP
005     20241120235913.0
008     241120nneanz||abbn n and d
035 ‎‡a  (WKP)Q57000244‏
024 ‎‡a  0000-0001-8537-3954‏ ‎‡2  orcid‏
024 ‎‡a  57200261255‏ ‎‡2  scopus‏
024 ‎‡a  56757748500‏ ‎‡2  scopus‏
024 ‎‡a  35081383400‏ ‎‡2  scopus‏
035 ‎‡a  (OCoLC)Q57000244‏
100 0 ‎‡a  Ying Wang‏ ‎‡c  researcher ORCID: 0000-0001-8537-3954‏ ‎‡9  en‏
670 ‎‡a  Author's Analysis of spatio-temporal brain imaging patterns by Hidden Markov Models and serial MRI images‏
670 ‎‡a  Author's Benefits of exercise training in patients receiving haemodialysis: a systematic review and meta-analysis.‏
670 ‎‡a  Author's Citations alone were enough to predict favorable conclusions in reviews of neuraminidase inhibitors‏
670 ‎‡a  Author's Efficacy of a Mobile Social Networking Intervention in Promoting Physical Activity: Quasi-Experimental Study‏
670 ‎‡a  Author's High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables‏
670 ‎‡a  Author's Imaging-based biomarkers of cognitive performance in older adults constructed via high-dimensional pattern regression applied to MRI and PET.‏
670 ‎‡a  Author's Insights into temporal patterns of hospital patient safety from routinely collected electronic data‏
670 ‎‡a  Author's Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease‏
670 ‎‡a  Author's Measuring the effects of computer downtime on hospital pathology processes.‏
670 ‎‡a  Author's Pattern Analysis in Neuroimaging: Beyond Two-Class Categorization‏
670 ‎‡a  Author's Predicting the cumulative risk of death during hospitalization by modeling weekend, weekday and diurnal mortality risks‏
670 ‎‡a  Author's Spatio-temporal Analysis of Brain MRI Images Using Hidden Markov Models‏
670 ‎‡a  Author's Urethral stricture caused by schistosomiasis in a renal transplant recipient.‏
670 ‎‡a  Author's Using convolutional neural networks to identify patient safety incident reports by type and severity‏
670 ‎‡a  Author's Using multiclass classification to automate the identification of patient safety incident reports by type and severity‏
909 ‎‡a  (scopus) 35081383400‏ ‎‡9  1‏
909 ‎‡a  (scopus) 56757748500‏ ‎‡9  1‏
909 ‎‡a  (scopus) 57200261255‏ ‎‡9  1‏
909 ‎‡a  (orcid) 0000000185373954‏ ‎‡9  1‏
919 ‎‡a  insulinandglucoseloweringagentsfortreatingpeoplewithdiabetesandchronickidneydisease‏ ‎‡A  Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease‏ ‎‡9  1‏
919 ‎‡a  insightsintotemporalpatternsofhospitalpatientsafetyfromroutinelycollectedelectronicdata‏ ‎‡A  Insights into temporal patterns of hospital patient safety from routinely collected electronic data‏ ‎‡9  1‏
919 ‎‡a  imagingbasedbiomarkersofcognitiveperformanceinolderadultsconstructedviahighdimensionalpatternregressionappliedtomriandpet‏ ‎‡A  Imaging-based biomarkers of cognitive performance in older adults constructed via high-dimensional pattern regression applied to MRI and PET.‏ ‎‡9  1‏
919 ‎‡a  highdimensionalpatternregressionusingmachinelearningfrommedicalimagestocontinuousclinicalvariables‏ ‎‡A  High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables‏ ‎‡9  1‏
919 ‎‡a  efficacyofamobilesocialnetworkinginterventioninpromotingphysicalactivityquasiexperimentalstudy‏ ‎‡A  Efficacy of a Mobile Social Networking Intervention in Promoting Physical Activity: Quasi-Experimental Study‏ ‎‡9  1‏
919 ‎‡a  benefitsofexercisetraininginpatientsreceivinghaemodialysisasystematicreviewandmetaanalysis‏ ‎‡A  Benefits of exercise training in patients receiving haemodialysis: a systematic review and meta-analysis.‏ ‎‡9  1‏
919 ‎‡a  citationsalonewereenoughtopredictfavorableconclusionsinreviewsofneuraminidaseinhibitors‏ ‎‡A  Citations alone were enough to predict favorable conclusions in reviews of neuraminidase inhibitors‏ ‎‡9  1‏
919 ‎‡a  measuringtheeffectsofcomputerdowntimeonhospitalpathologyprocesses‏ ‎‡A  Measuring the effects of computer downtime on hospital pathology processes.‏ ‎‡9  1‏
919 ‎‡a  patternanalysisinneuroimagingbeyond2classcategorization‏ ‎‡A  Pattern Analysis in Neuroimaging: Beyond Two-Class Categorization‏ ‎‡9  1‏
919 ‎‡a  predictingthecumulativeriskofdeathduringhospitalizationbymodelingweekendweekdayanddiurnalmortalityrisks‏ ‎‡A  Predicting the cumulative risk of death during hospitalization by modeling weekend, weekday and diurnal mortality risks‏ ‎‡9  1‏
919 ‎‡a  spatiotemporalanalysisofbrainmriimagesusinghiddenmarkovmodels‏ ‎‡A  Spatio-temporal Analysis of Brain MRI Images Using Hidden Markov Models‏ ‎‡9  1‏
919 ‎‡a  urethralstricturecausedbyschistosomiasisinarenaltransplantrecipient‏ ‎‡A  Urethral stricture caused by schistosomiasis in a renal transplant recipient.‏ ‎‡9  1‏
919 ‎‡a  usingconvolutionalneuralnetworkstoidentifypatientsafetyincidentreportsbytypeandseverity‏ ‎‡A  Using convolutional neural networks to identify patient safety incident reports by type and severity‏ ‎‡9  1‏
919 ‎‡a  usingmulticlassclassificationtoautomatetheidentificationofpatientsafetyincidentreportsbytypeandseverity‏ ‎‡A  Using multiclass classification to automate the identification of patient safety incident reports by type and severity‏ ‎‡9  1‏
919 ‎‡a  analysisofspatiotemporalbrainimagingpatternsbyhiddenmarkovmodelsandserialmriimages‏ ‎‡A  Analysis of spatio-temporal brain imaging patterns by Hidden Markov Models and serial MRI images‏ ‎‡9  1‏
996 ‎‡2  DNB|1228989184
996 ‎‡2  LC|no2020000042
996 ‎‡2  DNB|1284313719
996 ‎‡2  NSK|000491409
996 ‎‡2  DNB|122561414
996 ‎‡2  LC|n 2017002298
996 ‎‡2  ISNI|0000000382154013
996 ‎‡2  DNB|1294353926
996 ‎‡2  CAOONL|ncf11010848
996 ‎‡2  PLWABN|9811769723105606
996 ‎‡2  NTA|334241340
996 ‎‡2  ISNI|0000000419504938
996 ‎‡2  RERO|A011229893
996 ‎‡2  LC|n 88117195
996 ‎‡2  RERO|A016412813
996 ‎‡2  ISNI|0000000084213927
996 ‎‡2  LC|nr 98000118
996 ‎‡2  DNB|1116348470
996 ‎‡2  NSK|000744170
996 ‎‡2  SUDOC|199215383
996 ‎‡2  ISNI|000000007811333X
996 ‎‡2  SUDOC|197649793
996 ‎‡2  ISNI|0000000064181681
996 ‎‡2  LC|n 82053586
996 ‎‡2  CYT|AC000639740
996 ‎‡2  ISNI|0000000381823211
996 ‎‡2  SUDOC|066971519
996 ‎‡2  DNB|1058343815
996 ‎‡2  LC|n 87910505
996 ‎‡2  LC|n 96061111
996 ‎‡2  LC|no 97021789
996 ‎‡2  DNB|1305817214
996 ‎‡2  DNB|1256955388
996 ‎‡2  DNB|1263641350
996 ‎‡2  DNB|1021936561
996 ‎‡2  ISNI|0000000072889786
996 ‎‡2  W2Z|8014740
996 ‎‡2  DNB|1140651730
996 ‎‡2  DNB|1169145639
996 ‎‡2  BIBSYS|8014740
996 ‎‡2  SUDOC|112854605
996 ‎‡2  DNB|131966626
996 ‎‡2  ISNI|0000000382046194
996 ‎‡2  LC|nb2005017557
996 ‎‡2  PLWABN|9814026572505606
996 ‎‡2  LC|n 2024035236
996 ‎‡2  DNB|1282066676
996 ‎‡2  ISNI|0000000381993552
996 ‎‡2  J9U|987007385861605171
996 ‎‡2  ISNI|0000000051169253
996 ‎‡2  SUDOC|151261997
996 ‎‡2  BNF|14534463
996 ‎‡2  LC|n 2013185837
996 ‎‡2  NTA|271553707
996 ‎‡2  DNB|1218025166
996 ‎‡2  ISNI|0000000063559750
996 ‎‡2  DNB|1277888515
996 ‎‡2  CYT|AC000642158
996 ‎‡2  SUDOC|16711753X
996 ‎‡2  LC|no 95045069
996 ‎‡2  DNB|141597798
996 ‎‡2  CYT|AC000210409
996 ‎‡2  LC|no2009023056
996 ‎‡2  DNB|132433195X
996 ‎‡2  ISNI|0000000119738572
996 ‎‡2  SUDOC|228355583
996 ‎‡2  DNB|115925429X
996 ‎‡2  DNB|1313383376
996 ‎‡2  J9U|987007315980005171
996 ‎‡2  LC|n 85220755
996 ‎‡2  LC|n 85290732
996 ‎‡2  ISNI|0000000083401336
996 ‎‡2  NDL|00622078
996 ‎‡2  J9U|987012881957705171
996 ‎‡2  DNB|1156741904
996 ‎‡2  ISNI|0000000063963630
996 ‎‡2  NSK|000461453
996 ‎‡2  LC|n 78055386
996 ‎‡2  BNF|14420666
996 ‎‡2  PLWABN|9811566399305606
996 ‎‡2  DNB|1334893349
996 ‎‡2  LC|n 87140441
996 ‎‡2  DNB|1191518272
996 ‎‡2  BNF|16578299
996 ‎‡2  NKC|jcu2011668708
996 ‎‡2  ISNI|0000000500998568
996 ‎‡2  ISNI|0000000034198589
996 ‎‡2  NUKAT|n 2011076877
996 ‎‡2  LC|nr 90027381
996 ‎‡2  DNB|13293793X
996 ‎‡2  LC|no2008036637
996 ‎‡2  LC|no2017010340
996 ‎‡2  DNB|142704547
996 ‎‡2  ISNI|0000000055085487
996 ‎‡2  LC|no2008036638
996 ‎‡2  LC|nr 94002430
996 ‎‡2  DNB|1249803926
996 ‎‡2  LC|no2019009464
996 ‎‡2  J9U|987007370953405171
996 ‎‡2  SUDOC|159241731
996 ‎‡2  PLWABN|9811771554805606
996 ‎‡2  ISNI|0000000388081230
996 ‎‡2  LC|n 85245444
996 ‎‡2  NTA|438699432
996 ‎‡2  LC|n 87921087
996 ‎‡2  DNB|1059125005
996 ‎‡2  DNB|140953310
996 ‎‡2  PLWABN|9812854303105606
996 ‎‡2  LC|n 83329341
996 ‎‡2  NII|DA17897648
996 ‎‡2  SUDOC|203358139
996 ‎‡2  DNB|1272193489
996 ‎‡2  LC|no2008010848
996 ‎‡2  SUDOC|161278086
996 ‎‡2  DNB|125792328
996 ‎‡2  DNB|1149707704
996 ‎‡2  NTA|154177776
996 ‎‡2  DNB|1337440051
996 ‎‡2  BIBSYS|14006582
996 ‎‡2  ISNI|0000000043872758
996 ‎‡2  DNB|1112658564
996 ‎‡2  DNB|112598127X
996 ‎‡2  LC|n 84043280
996 ‎‡2  LC|nr 91017985
996 ‎‡2  RERO|A000175187
996 ‎‡2  ISNI|0000000079978482
996 ‎‡2  DNB|105080144X
996 ‎‡2  ISNI|000000049979644X
996 ‎‡2  SUDOC|144733617
996 ‎‡2  LC|no2007026334
996 ‎‡2  DNB|1074551303
996 ‎‡2  SUDOC|204375894
996 ‎‡2  CYT|AC000210563
996 ‎‡2  NTA|417377142
996 ‎‡2  ISNI|0000000382059120
996 ‎‡2  ISNI|0000000382662093
996 ‎‡2  LC|n 2016035042
996 ‎‡2  DNB|1044952725
996 ‎‡2  NII|DA11926969
996 ‎‡2  CYT|AC000635525
996 ‎‡2  LC|n 88157073
996 ‎‡2  LC|no2023102251
996 ‎‡2  LC|no 95004494
996 ‎‡2  ISNI|0000000052102560
996 ‎‡2  RERO|A020186071
996 ‎‡2  LC|no2010162940
996 ‎‡2  CYT|AC000642228
996 ‎‡2  SUDOC|229632955
996 ‎‡2  LC|n 85345150
996 ‎‡2  CAOONL|ncf11341397
996 ‎‡2  ISNI|0000000001024558
996 ‎‡2  CYT|AC000431061
996 ‎‡2  NTA|439922674
996 ‎‡2  CYT|AC000642051
996 ‎‡2  ISNI|0000000115000466
996 ‎‡2  SUDOC|111303656
996 ‎‡2  ISNI|000000006343507X
996 ‎‡2  NTA|34586722X
996 ‎‡2  LC|n 79118819
996 ‎‡2  LC|nr 94004574
996 ‎‡2  SZ|141597798
996 ‎‡2  DNB|101175357X
996 ‎‡2  ISNI|0000000064058835
996 ‎‡2  DNB|1023071754
996 ‎‡2  PLWABN|9811357029705606
996 ‎‡2  ISNI|0000000063787112
996 ‎‡2  DNB|1117115941
996 ‎‡2  SUDOC|188108483
996 ‎‡2  PLWABN|9812807237105606
996 ‎‡2  LC|n 2021067755
996 ‎‡2  LC|no2016128854
996 ‎‡2  LC|n 78075187
996 ‎‡2  LC|n 87839828
996 ‎‡2  NTA|340415975
996 ‎‡2  ISNI|0000000078010488
996 ‎‡2  SELIBR|405818
996 ‎‡2  ISNI|000000009910714X
996 ‎‡2  ISNI|0000000453084201
996 ‎‡2  LC|no2015012366
996 ‎‡2  ISNI|0000000083009270
996 ‎‡2  LC|no2007023617
996 ‎‡2  DNB|1089793510
996 ‎‡2  DNB|1207887846
996 ‎‡2  DNB|1043946098
996 ‎‡2  DNB|173861970
996 ‎‡2  LC|n 79066195
996 ‎‡2  ISNI|0000000118058313
996 ‎‡2  LC|no2022145572
996 ‎‡2  LIH|LNB:B5_j_M;=BU
996 ‎‡2  LC|no2005096257
996 ‎‡2  BNF|17122253
996 ‎‡2  LC|no2023032790
996 ‎‡2  DNB|1169356354
996 ‎‡2  SUDOC|22486906X
996 ‎‡2  DNB|1235624242
996 ‎‡2  DNB|1207789046
996 ‎‡2  DBC|87097969817025
996 ‎‡2  ISNI|0000000075388661
996 ‎‡2  NDL|00481890
996 ‎‡2  NII|DA11666540
996 ‎‡2  BNC|981058525301006706
996 ‎‡2  ISNI|0000000064161576
996 ‎‡2  J9U|987007585316305171
996 ‎‡2  DNB|143772511
996 ‎‡2  LC|nr 00003879
996 ‎‡2  BNF|16757206
996 ‎‡2  NUKAT|n 2004020726
996 ‎‡2  NSK|000736560
996 ‎‡2  NSK|000158613
996 ‎‡2  LC|no2018146027
996 ‎‡2  ISNI|0000000063669415
996 ‎‡2  DNB|1283679086
996 ‎‡2  PLWABN|9812843085105606
996 ‎‡2  CYT|AC000585314
996 ‎‡2  ISNI|0000000016882651
996 ‎‡2  ISNI|0000000434899384
996 ‎‡2  LC|no2021123681
996 ‎‡2  DNB|173432263
996 ‎‡2  LC|no2021123682
996 ‎‡2  J9U|987007423048605171
996 ‎‡2  ISNI|0000000048435784
996 ‎‡2  CYT|AC000662177
996 ‎‡2  LC|nr 91026008
996 ‎‡2  DNB|125715804X
996 ‎‡2  ISNI|000000049573169X
996 ‎‡2  CYT|AC000659535
996 ‎‡2  CYT|AC000634580
996 ‎‡2  PLWABN|9812033286105606
996 ‎‡2  LC|no2008150139
996 ‎‡2  SUDOC|156786397
996 ‎‡2  DNB|1052371477
996 ‎‡2  DNB|1205171525
996 ‎‡2  LC|n 88047030
996 ‎‡2  LC|no2009025942
996 ‎‡2  LC|n 2011077689
996 ‎‡2  NII|DA07469182
996 ‎‡2  JPG|500128019
996 ‎‡2  DNB|1331206928
996 ‎‡2  DNB|1330951611
996 ‎‡2  BNF|16652296
996 ‎‡2  BIBSYS|8004847
996 ‎‡2  DNB|1282572997
996 ‎‡2  ISNI|0000000382436619
996 ‎‡2  NTA|157518787
996 ‎‡2  DNB|1034963244
996 ‎‡2  ISNI|000000005452509X
996 ‎‡2  CYT|AC000372009
996 ‎‡2  LC|no2019191389
996 ‎‡2  LC|no2019098017
996 ‎‡2  DNB|1231388838
997 ‎‡a  0 0 lived 0 0‏ ‎‡9  1‏