VIAF

Virtual International Authority File

Search

Leader     00000nz a2200037n 45 0
001     WKP|Q59115171  (VIAF cluster)  (Authority/Source Record)
003     WKP
005     20241221010846.0
008     241221nneanz||abbn n and d
035 ‎‡a  (WKP)Q59115171‏
024 ‎‡a  0000-0002-3665-7106‏ ‎‡2  orcid‏
024 ‎‡a  28268038100‏ ‎‡2  scopus‏
035 ‎‡a  (OCoLC)Q59115171‏
100 0 ‎‡a  Anthal I.P.M. Smits‏ ‎‡c  researcher ORCID ID = 0000-0002-3665-7106‏ ‎‡9  en‏
400 0 ‎‡a  Anthal I.P.M. Smits‏ ‎‡c  wetenschapper‏ ‎‡9  nl‏
670 ‎‡a  Author's A mesofluidics-based test platform for systematic development of scaffolds for in situ cardiovascular tissue engineering.‏
670 ‎‡a  Author's Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective.‏
670 ‎‡a  Author's Can We Grow Valves Inside the Heart? Perspective on Material-based In Situ Heart Valve Tissue Engineering.‏
670 ‎‡a  Author's Cyclic Strain Affects Macrophage Cytokine Secretion and Extracellular Matrix Turnover in Electrospun Scaffolds‏
670 ‎‡a  Author's Decoupling the Effect of Shear Stress and Stretch on Tissue Growth and Remodeling in a Vascular Graft‏
670 ‎‡a  Author's Development of Non-Cell Adhesive Vascular Grafts Using Supramolecular Building Blocks.‏
670 ‎‡a  Author's Differential Leaflet Remodeling of Bone Marrow Cell Pre-Seeded Versus Nonseeded Bioresorbable Transcatheter Pulmonary Valve Replacements‏
670 ‎‡a  Author's Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters.‏
670 ‎‡a  Author's Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides.‏
670 ‎‡a  Author's Ex vivo culture platform for assessment of cartilage repair treatment strategies.‏
670 ‎‡a  Author's Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages - implications for in situ vascular tissue engineering‏
670 ‎‡a  Author's Host Response and Neo-Tissue Development during Resorption of a Fast Degrading Supramolecular Electrospun Arterial Scaffold‏
670 ‎‡a  Author's Human In Vitro Model Mimicking Material-Driven Vascular Regeneration Reveals How Cyclic Stretch and Shear Stress Differentially Modulate Inflammation and Matrix Deposition‏
670 ‎‡a  Author's In situ heart valve tissue engineering using a bioresorbable elastomeric implant - From material design to 12 months follow-up in sheep.‏
670 ‎‡a  Author's In Situ Tissue Engineering of Functional Small-Diameter Blood Vessels by Host Circulating Cells Only.‏
670 ‎‡a  Author's In Situ Tissue Engineering: Seducing the Body to Regenerate‏
670 ‎‡a  Author's Layer-specific cell differentiation in bi-layered vascular grafts under flow perfusion‏
670 ‎‡a  Author's Macrophage-Driven Biomaterial Degradation Depends on Scaffold Microarchitecture‏
670 ‎‡a  Author's Modulation of macrophage phenotype and protein secretion via heparin-IL-4 functionalized supramolecular elastomers‏
670 ‎‡a  Author's Probing Single-Cell Macrophage Polarization and Heterogeneity Using Thermo-Reversible Hydrogels in Droplet-Based Microfluidics‏
670 ‎‡a  Author's Shear flow affects selective monocyte recruitment into MCP-1-loaded scaffolds‏
670 ‎‡a  Author's Sheep-Specific Immunohistochemical Panel for the Evaluation of Regenerative and Inflammatory Processes in Tissue-Engineered Heart Valves‏
670 ‎‡a  Author's Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow.‏
670 ‎‡a  Author's The degradation and performance of electrospun supramolecular vascular scaffolds examined upon in vitro enzymatic exposure‏
670 ‎‡a  Author's Then and now: hypes and hopes of regenerative medicine.‏
670 ‎‡a  Author's Tissue engineering meets immunoengineering: Prospective on personalized in situ tissue engineering strategies‏
670 ‎‡a  Author's Tissue engineering of heart valves: advances and current challenges.‏
909 ‎‡a  (orcid) 0000000236657106‏ ‎‡9  1‏
909 ‎‡a  (scopus) 28268038100‏ ‎‡9  1‏
919 ‎‡a  differentialresponseofendothelialandendothelialcolonyformingcellsonelectrospunscaffoldswithdistinctmicrofiberdiameters‏ ‎‡A  Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters.‏ ‎‡9  1‏
919 ‎‡a  degradationandperformanceofelectrospunsupramolecularvascularscaffoldsexamineduponinvitroenzymaticexposure‏ ‎‡A  The degradation and performance of electrospun supramolecular vascular scaffolds examined upon in vitro enzymatic exposure‏ ‎‡9  1‏
919 ‎‡a  hemodynamicloadsdistinctivelyimpactthesecretoryprofileofbiomaterialactivatedmacrophagesimplicationsforinsituvasculartissueengineering‏ ‎‡A  Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages - implications for in situ vascular tissue engineering‏ ‎‡9  1‏
919 ‎‡a  earlyinsitucellularizationofasupramolecularvasculargraftismodifiedbysyntheticstromalcellderivedfactor1αderivedpeptides‏ ‎‡A  Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides.‏ ‎‡9  1‏
919 ‎‡a  biomaterialdriveninsitucardiovasculartissueengineeringamultidisciplinaryperspective‏ ‎‡A  Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective.‏ ‎‡9  1‏
919 ‎‡a  mesofluidicsbasedtestplatformforsystematicdevelopmentofscaffoldsforinsitucardiovasculartissueengineering‏ ‎‡A  A mesofluidics-based test platform for systematic development of scaffolds for in situ cardiovascular tissue engineering.‏ ‎‡9  1‏
919 ‎‡a  modulationofmacrophagephenotypeandproteinsecretionviaheparinil4functionalizedsupramolecularelastomers‏ ‎‡A  Modulation of macrophage phenotype and protein secretion via heparin-IL-4 functionalized supramolecular elastomers‏ ‎‡9  1‏
919 ‎‡a  sheepspecificimmunohistochemicalpanelfortheevaluationofregenerativeandinflammatoryprocessesintissueengineeredheartvalves‏ ‎‡A  Sheep-Specific Immunohistochemical Panel for the Evaluation of Regenerative and Inflammatory Processes in Tissue-Engineered Heart Valves‏ ‎‡9  1‏
919 ‎‡a  developmentofnoncelladhesivevasculargraftsusingsupramolecularbuildingblocks‏ ‎‡A  Development of Non-Cell Adhesive Vascular Grafts Using Supramolecular Building Blocks.‏ ‎‡9  1‏
919 ‎‡a  probingsinglecellmacrophagepolarizationandheterogeneityusingthermoreversiblehydrogelsindropletbasedmicrofluidics‏ ‎‡A  Probing Single-Cell Macrophage Polarization and Heterogeneity Using Thermo-Reversible Hydrogels in Droplet-Based Microfluidics‏ ‎‡9  1‏
919 ‎‡a  macrophagedrivenbiomaterialdegradationdependsonscaffoldmicroarchitecture‏ ‎‡A  Macrophage-Driven Biomaterial Degradation Depends on Scaffold Microarchitecture‏ ‎‡9  1‏
919 ‎‡a  layerspecificcelldifferentiationinbilayeredvasculargraftsunderflowperfusion‏ ‎‡A  Layer-specific cell differentiation in bi-layered vascular grafts under flow perfusion‏ ‎‡9  1‏
919 ‎‡a  shearflowaffectsselectivemonocyterecruitmentintomcp1loadedscaffolds‏ ‎‡A  Shear flow affects selective monocyte recruitment into MCP-1-loaded scaffolds‏ ‎‡9  1‏
919 ‎‡a  insitutissueengineeringseducingthebodytoregenerate‏ ‎‡A  In Situ Tissue Engineering: Seducing the Body to Regenerate‏ ‎‡9  1‏
919 ‎‡a  insitutissueengineeringoffunctionalsmalldiameterbloodvesselsbyhostcirculatingcellsonly‏ ‎‡A  In Situ Tissue Engineering of Functional Small-Diameter Blood Vessels by Host Circulating Cells Only.‏ ‎‡9  1‏
919 ‎‡a  decouplingtheeffectofshearstressandstretchontissuegrowthandremodelinginavasculargraft‏ ‎‡A  Decoupling the Effect of Shear Stress and Stretch on Tissue Growth and Remodeling in a Vascular Graft‏ ‎‡9  1‏
919 ‎‡a  hostresponseandneotissuedevelopmentduringresorptionofafastdegradingsupramolecularelectrospunarterialscaffold‏ ‎‡A  Host Response and Neo-Tissue Development during Resorption of a Fast Degrading Supramolecular Electrospun Arterial Scaffold‏ ‎‡9  1‏
919 ‎‡a  exvivocultureplatformforassessmentofcartilagerepairtreatmentstrategies‏ ‎‡A  Ex vivo culture platform for assessment of cartilage repair treatment strategies.‏ ‎‡9  1‏
919 ‎‡a  insituheartvalvetissueengineeringusingabioresorbableelastomericimplantfrommaterialdesignto12monthsfollowupinsheep‏ ‎‡A  In situ heart valve tissue engineering using a bioresorbable elastomeric implant - From material design to 12 months follow-up in sheep.‏ ‎‡9  1‏
919 ‎‡a  humaninvitromodelmimickingmaterialdrivenvascularregenerationrevealshowcyclicstretchandshearstressdifferentiallymodulateinflammationandmatrixdeposition‏ ‎‡A  Human In Vitro Model Mimicking Material-Driven Vascular Regeneration Reveals How Cyclic Stretch and Shear Stress Differentially Modulate Inflammation and Matrix Deposition‏ ‎‡9  1‏
919 ‎‡a  synergisticproteinsecretionbymesenchymalstromalcellsseededin3dscaffoldsandcirculatingleukocytesinphysiologicalflow‏ ‎‡A  Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow.‏ ‎‡9  1‏
919 ‎‡a  cyclicstrainaffectsmacrophagecytokinesecretionandextracellularmatrixturnoverinelectrospunscaffolds‏ ‎‡A  Cyclic Strain Affects Macrophage Cytokine Secretion and Extracellular Matrix Turnover in Electrospun Scaffolds‏ ‎‡9  1‏
919 ‎‡a  tissueengineeringmeetsimmunoengineeringprospectiveonpersonalizedinsitutissueengineeringstrategies‏ ‎‡A  Tissue engineering meets immunoengineering: Prospective on personalized in situ tissue engineering strategies‏ ‎‡9  1‏
919 ‎‡a  differentialleafletremodelingofbonemarrowcellpreseededversusnonseededbioresorbabletranscatheterpulmonaryvalvereplacements‏ ‎‡A  Differential Leaflet Remodeling of Bone Marrow Cell Pre-Seeded Versus Nonseeded Bioresorbable Transcatheter Pulmonary Valve Replacements‏ ‎‡9  1‏
919 ‎‡a  canwegrowvalvesinsidetheheartperspectiveonmaterialbasedinsituheartvalvetissueengineering‏ ‎‡A  Can We Grow Valves Inside the Heart? Perspective on Material-based In Situ Heart Valve Tissue Engineering.‏ ‎‡9  1‏
919 ‎‡a  thenandnowhypesandhopesofregenerativemedicine‏ ‎‡A  Then and now: hypes and hopes of regenerative medicine.‏ ‎‡9  1‏
919 ‎‡a  tissueengineeringofheartvalvesadvancesandcurrentchallenges‏ ‎‡A  Tissue engineering of heart valves: advances and current challenges.‏ ‎‡9  1‏
996 ‎‡2  NTA|152190406
996 ‎‡2  ISNI|0000000389779198
996 ‎‡2  NTA|073636029
996 ‎‡2  NTA|072049243
996 ‎‡2  NTA|226746593
996 ‎‡2  SUDOC|164473254
996 ‎‡2  NTA|242094929
996 ‎‡2  ISNI|0000000394972339
996 ‎‡2  DNB|127941037
996 ‎‡2  ISNI|0000000391252571
996 ‎‡2  ISNI|0000000395496151
996 ‎‡2  ISNI|0000000391004498
996 ‎‡2  NTA|070087571
996 ‎‡2  LC|no2023001241
996 ‎‡2  NTA|074791672
996 ‎‡2  NTA|327783257
996 ‎‡2  NTA|073015148
996 ‎‡2  SUDOC|130282898
996 ‎‡2  NTA|067937640
996 ‎‡2  NTA|074680471
996 ‎‡2  SUDOC|103266526
996 ‎‡2  NTA|143338412
996 ‎‡2  SUDOC|181578212
996 ‎‡2  ISNI|0000000394021357
996 ‎‡2  NTA|271405228
996 ‎‡2  ISNI|0000000423332892
996 ‎‡2  ISNI|0000000391067798
996 ‎‡2  ISNI|0000000390801639
996 ‎‡2  ISNI|0000000396600133
996 ‎‡2  NTA|074031716
996 ‎‡2  NTA|108741214
996 ‎‡2  NTA|391932179
996 ‎‡2  NTA|080182046
996 ‎‡2  LC|nr 89017564
996 ‎‡2  NTA|431275718
996 ‎‡2  ISNI|0000000394432666
996 ‎‡2  ISNI|000000039061207X
996 ‎‡2  NTA|304813710
997 ‎‡a  0 0 lived 0 0‏ ‎‡9  1‏