VIAF

Virtual International Authority File

Search

Leader     00000nz a2200037n 45 0
001     WKP|Q59679294  (VIAF cluster)  (Authority/Source Record)
003     WKP
005     20241121000327.0
008     241121nneanz||abbn n and d
035 ‎‡a  (WKP)Q59679294‏
024 ‎‡a  0000-0001-9308-3594‏ ‎‡2  orcid‏
035 ‎‡a  (OCoLC)Q59679294‏
100 0 ‎‡a  Fernando R Fernandez‏ ‎‡c  researcher ORCID ID = 0000-0001-9308-3594‏ ‎‡9  en‏
400 0 ‎‡a  Fernando R Fernandez‏ ‎‡c  wetenschapper‏ ‎‡9  nl‏
670 ‎‡a  Author's A-type and T-type currents interact to produce a novel spike latency-voltage relationship in cerebellar stellate cells‏
670 ‎‡a  Author's Artificial synaptic conductances reduce subthreshold oscillations and periodic firing in stellate cells of the entorhinal cortex‏
670 ‎‡a  Author's Balanced synaptic currents underlie low-frequency oscillations in the subiculum‏
670 ‎‡a  Author's CamKIIα Positive Interneurons Identified via A microRNA Based Viral Gene Targeting Strategy‏
670 ‎‡a  Author's CamKIIα Positive Interneurons Identified via A microRNA Based Viral Gene Targeting Strategy‏
670 ‎‡a  Author's Dendritic Na+ current inactivation can increase cell excitability by delaying a somatic depolarizing afterpotential.‏
670 ‎‡a  Author's Differences in the Electrophysiological Properties of Mouse Somatosensory Layer 2/3 Neurons In Vivo and Slice Stem from Intrinsic Sources Rather than a Network-Generated High Conductance State.‏
670 ‎‡a  Author's Distribution and function of potassium channels in the electrosensory lateral line lobe of weakly electric apteronotid fish.‏
670 ‎‡a  Author's Dynamic clamp: alteration of response properties and creation of virtual realities in neurophysiology.‏
670 ‎‡a  Author's Entorhinal stellate cells show preferred spike phase-locking to theta inputs that is enhanced by correlations in synaptic activity.‏
670 ‎‡a  Author's Gain control in CA1 pyramidal cells using changes in somatic conductance.‏
670 ‎‡a  Author's Gain Modulation of Cholinergic Neurons in the Medial Septum-Diagonal Band of Broca Through Hyperpolarization.‏
670 ‎‡a  Author's High-threshold K+ current increases gain by offsetting a frequency-dependent increase in low-threshold K+ current.‏
670 ‎‡a  Author's Imaging activity in neurons and glia with a Polr2a-based and cre-dependent GCaMP5G-IRES-tdTomato reporter mouse.‏
670 ‎‡a  Author's Mechanisms of coherent activity in hippocampus and entorhinal cortex.‏
670 ‎‡a  Author's Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations‏
670 ‎‡a  Author's Reduction of spike afterdepolarization by increased leak conductance alters interspike interval variability‏
670 ‎‡a  Author's Regulation of burst dynamics improves differential encoding of stimulus frequency by spike train segregation.‏
670 ‎‡a  Author's Regulation of somatic firing dynamics by backpropagating dendritic spikes.‏
670 ‎‡a  Author's Spike phase locking in CA1 pyramidal neurons depends on background conductance and firing rate.‏
670 ‎‡a  Author's Spike resonance properties in hippocampal O-LM cells are dependent on refractory dynamics‏
670 ‎‡a  Author's Voltage-Dependent Membrane Properties Shape the Size But Not the Frequency Content of Spontaneous Voltage Fluctuations in Layer 2/3 Somatosensory Cortex‏
909 ‎‡a  (orcid) 0000000193083594‏ ‎‡9  1‏
919 ‎‡a  dynamicclampalterationofresponsepropertiesandcreationofvirtualrealitiesinneurophysiology‏ ‎‡A  Dynamic clamp: alteration of response properties and creation of virtual realities in neurophysiology.‏ ‎‡9  1‏
919 ‎‡a  entorhinalstellatecellsshowpreferredspikephaselockingtothetainputsthatisenhancedbycorrelationsinsynapticactivity‏ ‎‡A  Entorhinal stellate cells show preferred spike phase-locking to theta inputs that is enhanced by correlations in synaptic activity.‏ ‎‡9  1‏
919 ‎‡a  gaincontrolinca1pyramidalcellsusingchangesinsomaticconductance‏ ‎‡A  Gain control in CA1 pyramidal cells using changes in somatic conductance.‏ ‎‡9  1‏
919 ‎‡a  gainmodulationofcholinergicneuronsinthemedialseptumdiagonalbandofbrocathroughhyperpolarization‏ ‎‡A  Gain Modulation of Cholinergic Neurons in the Medial Septum-Diagonal Band of Broca Through Hyperpolarization.‏ ‎‡9  1‏
919 ‎‡a  highthresholdk+currentincreasesgainbyoffsettingafrequencydependentincreaseinlowthresholdk+current‏ ‎‡A  High-threshold K+ current increases gain by offsetting a frequency-dependent increase in low-threshold K+ current.‏ ‎‡9  1‏
919 ‎‡a  imagingactivityinneuronsandgliawithapolr2abasedandcredependentgcamp5girestdtomatoreportermouse‏ ‎‡A  Imaging activity in neurons and glia with a Polr2a-based and cre-dependent GCaMP5G-IRES-tdTomato reporter mouse.‏ ‎‡9  1‏
919 ‎‡a  mechanismsofcoherentactivityinhippocampusandentorhinalcortex‏ ‎‡A  Mechanisms of coherent activity in hippocampus and entorhinal cortex.‏ ‎‡9  1‏
919 ‎‡a  nonlinearmembranepropertiesinentorhinalcorticalstellatecellsreducemodulationofinputoutputresponsesbyvoltagefluctuations‏ ‎‡A  Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations‏ ‎‡9  1‏
919 ‎‡a  reductionofspikeafterdepolarizationbyincreasedleakconductancealtersinterspikeintervalvariability‏ ‎‡A  Reduction of spike afterdepolarization by increased leak conductance alters interspike interval variability‏ ‎‡9  1‏
919 ‎‡a  regulationofburstdynamicsimprovesdifferentialencodingofstimulusfrequencybyspiketrainsegregation‏ ‎‡A  Regulation of burst dynamics improves differential encoding of stimulus frequency by spike train segregation.‏ ‎‡9  1‏
919 ‎‡a  regulationofsomaticfiringdynamicsbybackpropagatingdendriticspikes‏ ‎‡A  Regulation of somatic firing dynamics by backpropagating dendritic spikes.‏ ‎‡9  1‏
919 ‎‡a  spikephaselockinginca1pyramidalneuronsdependsonbackgroundconductanceandfiringrate‏ ‎‡A  Spike phase locking in CA1 pyramidal neurons depends on background conductance and firing rate.‏ ‎‡9  1‏
919 ‎‡a  spikeresonancepropertiesinhippocampalolmcellsaredependentonrefractorydynamics‏ ‎‡A  Spike resonance properties in hippocampal O-LM cells are dependent on refractory dynamics‏ ‎‡9  1‏
919 ‎‡a  voltagedependentmembranepropertiesshapethesizebutnotthefrequencycontentofspontaneousvoltagefluctuationsinlayer23somatosensorycortex‏ ‎‡A  Voltage-Dependent Membrane Properties Shape the Size But Not the Frequency Content of Spontaneous Voltage Fluctuations in Layer 2/3 Somatosensory Cortex‏ ‎‡9  1‏
919 ‎‡a  camkiiαpositiveinterneuronsidentifiedviaamicrornabasedviralgenetargetingstrategy‏ ‎‡A  CamKIIα Positive Interneurons Identified via A microRNA Based Viral Gene Targeting Strategy‏ ‎‡9  1‏
919 ‎‡a  camkiiipositiveinterneuronsidentifiedviaamicrornabasedviralgenetargetingstrategy‏ ‎‡A  CamKIIα Positive Interneurons Identified via A microRNA Based Viral Gene Targeting Strategy‏ ‎‡9  1‏
919 ‎‡a  balancedsynapticcurrentsunderlielowfrequencyoscillationsinthesubiculum‏ ‎‡A  Balanced synaptic currents underlie low-frequency oscillations in the subiculum‏ ‎‡9  1‏
919 ‎‡a  artificialsynapticconductancesreducesubthresholdoscillationsandperiodicfiringinstellatecellsoftheentorhinalcortex‏ ‎‡A  Artificial synaptic conductances reduce subthreshold oscillations and periodic firing in stellate cells of the entorhinal cortex‏ ‎‡9  1‏
919 ‎‡a  typeandttypecurrentsinteracttoproduceanovelspikelatencyvoltagerelationshipincerebellarstellatecells‏ ‎‡A  A-type and T-type currents interact to produce a novel spike latency-voltage relationship in cerebellar stellate cells‏ ‎‡9  1‏
919 ‎‡a  dendriticna+currentinactivationcanincreasecellexcitabilitybydelayingasomaticdepolarizingafterpotential‏ ‎‡A  Dendritic Na+ current inactivation can increase cell excitability by delaying a somatic depolarizing afterpotential.‏ ‎‡9  1‏
919 ‎‡a  differencesintheelectrophysiologicalpropertiesofmousesomatosensorylayer23neuronsinvivoandslicestemfromintrinsicsourcesratherthananetworkgeneratedhighconductancestate‏ ‎‡A  Differences in the Electrophysiological Properties of Mouse Somatosensory Layer 2/3 Neurons In Vivo and Slice Stem from Intrinsic Sources Rather than a Network-Generated High Conductance State.‏ ‎‡9  1‏
919 ‎‡a  distributionandfunctionofpotassiumchannelsintheelectrosensorylaterallinelobeofweaklyelectricapteronotidfish‏ ‎‡A  Distribution and function of potassium channels in the electrosensory lateral line lobe of weakly electric apteronotid fish.‏ ‎‡9  1‏
996 ‎‡2  ISNI|0000000079787563
996 ‎‡2  ISNI|0000000078252946
996 ‎‡2  BNE|XX4581229
996 ‎‡2  SUDOC|061289841
996 ‎‡2  BNF|15899090
996 ‎‡2  ISNI|0000000060874990
996 ‎‡2  LC|n 2007004390
996 ‎‡2  ISNI|0000000110303249
996 ‎‡2  BNE|XX821073
996 ‎‡2  BNE|XX1031088
996 ‎‡2  DNB|1081695978
996 ‎‡2  DNB|1157200222
996 ‎‡2  ISNI|0000000107760094
996 ‎‡2  ISNI|0000000115970032
996 ‎‡2  DNB|1239567847
996 ‎‡2  LC|n 2021061265
996 ‎‡2  J9U|987007274672505171
996 ‎‡2  SUDOC|060614072
996 ‎‡2  ICCU|CUBV063233
996 ‎‡2  PTBNP|1490928
996 ‎‡2  SUDOC|257862250
996 ‎‡2  BNCHL|10000000000000000096485
996 ‎‡2  ISNI|0000000034090260
996 ‎‡2  BNC|981058522357606706
996 ‎‡2  BNE|XX961782
996 ‎‡2  BNE|XX977996
996 ‎‡2  LC|no2022027036
996 ‎‡2  ISNI|0000000079804327
996 ‎‡2  BNF|16574692
996 ‎‡2  NII|DA02145525
996 ‎‡2  BNC|981058530070906706
996 ‎‡2  BNE|XX1702923
996 ‎‡2  BNE|XX4690135
996 ‎‡2  ISNI|0000000108745814
996 ‎‡2  BNE|XX1641738
996 ‎‡2  DNB|120158406X
996 ‎‡2  LC|n 88613837
996 ‎‡2  RERO|A003238890
996 ‎‡2  J9U|987007574575205171
996 ‎‡2  NII|DA15872089
996 ‎‡2  BNE|XX1441980
996 ‎‡2  BNE|XX1294738
996 ‎‡2  BNE|XX954502
996 ‎‡2  DNB|170585409
996 ‎‡2  ISNI|0000000123619680
996 ‎‡2  LC|no2011109959
996 ‎‡2  DNB|1057366722
996 ‎‡2  BNE|XX888783
996 ‎‡2  BNE|XX1085808
996 ‎‡2  SUDOC|190386010
996 ‎‡2  BNE|XX1102383
996 ‎‡2  ISNI|0000000392988345
996 ‎‡2  ISNI|0000000121236651
996 ‎‡2  BNE|XX1542403
996 ‎‡2  DNB|171468341
996 ‎‡2  CAOONL|ncf11302580
996 ‎‡2  NII|DA15461255
996 ‎‡2  BNE|XX884736
996 ‎‡2  BNE|XX1005469
996 ‎‡2  RERO|A005919071
996 ‎‡2  B2Q|0000839710
996 ‎‡2  ISNI|0000000059491853
996 ‎‡2  SUDOC|028788524
996 ‎‡2  ISNI|0000000061033755
996 ‎‡2  LC|n 2012182505
996 ‎‡2  LC|n 86123081
996 ‎‡2  NTA|336981090
996 ‎‡2  BNE|XX1148299
996 ‎‡2  NII|DA09135701
996 ‎‡2  BNE|XX822743
996 ‎‡2  BNE|XX4578568
996 ‎‡2  BNE|XX4990702
996 ‎‡2  ISNI|0000000059770131
996 ‎‡2  ISNI|0000000047762695
996 ‎‡2  BNE|XX4928163
996 ‎‡2  LC|n 87877402
996 ‎‡2  BNC|981058518662506706
996 ‎‡2  SUDOC|221235191
996 ‎‡2  DNB|1314214047
996 ‎‡2  BNCHL|10000000000000000056801
996 ‎‡2  CAOONL|ncf10847391
996 ‎‡2  ISNI|0000000380674381
996 ‎‡2  NUKAT|nx2024046250
996 ‎‡2  ISNI|0000000060680344
996 ‎‡2  SUDOC|236327194
996 ‎‡2  SUDOC|029042852
996 ‎‡2  BNE|XX1506674
996 ‎‡2  ISNI|000000003863179X
996 ‎‡2  BNE|XX1125837
996 ‎‡2  LC|n 2021004634
996 ‎‡2  LC|n 50056979
996 ‎‡2  DNB|1057603864
996 ‎‡2  ISNI|0000000083571669
996 ‎‡2  LC|n 2021004638
996 ‎‡2  BNE|XX1677628
996 ‎‡2  NTA|270168850
996 ‎‡2  BLBNB|001472456
996 ‎‡2  LC|no2021054736
996 ‎‡2  LC|n 91027414
996 ‎‡2  BNC|981058510999106706
996 ‎‡2  BNE|XX829506
996 ‎‡2  BNE|XX1544282
996 ‎‡2  BNE|XX1268646
996 ‎‡2  DNB|1066275505
996 ‎‡2  LC|n 2003005778
996 ‎‡2  BNE|XX1050886
996 ‎‡2  BNC|981058615751406706
996 ‎‡2  ISNI|0000000497236596
996 ‎‡2  BNE|XX1303879
996 ‎‡2  NTA|073565709
996 ‎‡2  LC|no2016019220
996 ‎‡2  BNE|XX1137409
996 ‎‡2  DNB|14112959X
996 ‎‡2  BNE|XX1273958
996 ‎‡2  SUDOC|087701235
996 ‎‡2  BNE|XX1798221
996 ‎‡2  PLWABN|9811305539005606
996 ‎‡2  BNF|16721991
996 ‎‡2  DNB|1056353090
996 ‎‡2  RERO|A003078004
996 ‎‡2  BNE|XX917392
996 ‎‡2  BNC|981058612241906706
996 ‎‡2  SUDOC|253986567
996 ‎‡2  BNE|XX4999401
996 ‎‡2  LC|n 50015641
996 ‎‡2  ISNI|0000000116581266
996 ‎‡2  BNC|981060174665006706
996 ‎‡2  PTBNP|1719380
996 ‎‡2  ISNI|0000000060318265
996 ‎‡2  BNE|XX1080144
996 ‎‡2  DNB|1057272175
996 ‎‡2  BNE|XX1603091
996 ‎‡2  BNE|XX4826668
996 ‎‡2  BNE|XX1091655
996 ‎‡2  NTA|070475423
996 ‎‡2  ISNI|0000000036041614
996 ‎‡2  BNE|XX898677
996 ‎‡2  BNE|XX930163
996 ‎‡2  NSK|000462560
996 ‎‡2  ISNI|0000000080818646
996 ‎‡2  LC|no2008022194
996 ‎‡2  BNCHL|10000000000000000093163
996 ‎‡2  BNE|XX5399120
996 ‎‡2  CAOONL|ncf11187718
996 ‎‡2  BNE|XX1762879
996 ‎‡2  ISNI|0000000395557997
996 ‎‡2  SUDOC|177297891
996 ‎‡2  LC|no2015030948
996 ‎‡2  BNE|XX892901
996 ‎‡2  LC|no2012161546
996 ‎‡2  BNE|XX1022734
996 ‎‡2  ISNI|0000000100546562
996 ‎‡2  BNE|XX941125
996 ‎‡2  BNE|XX1476185
996 ‎‡2  LC|nr2005012936
996 ‎‡2  BNF|14541857
996 ‎‡2  SUDOC|254457924
996 ‎‡2  LIH|LNB:B0KY;=BC
996 ‎‡2  BNE|XX987537
996 ‎‡2  BNCHL|10000000000000000240761
996 ‎‡2  ISNI|0000000060785509
996 ‎‡2  ISNI|000000006071505X
996 ‎‡2  SUDOC|081955049
996 ‎‡2  SUDOC|11536403X
996 ‎‡2  DNB|1027204600
996 ‎‡2  BNE|XX1704206
996 ‎‡2  BNE|XX5268716
996 ‎‡2  DNB|122385934
996 ‎‡2  DNB|171587936
996 ‎‡2  DNB|1056644907
996 ‎‡2  BNC|981058529961706706
996 ‎‡2  LC|n 83212991
996 ‎‡2  BNE|XX1250164
996 ‎‡2  BNC|981058518525606706
996 ‎‡2  BNC|981058528628706706
996 ‎‡2  SUDOC|029446686
996 ‎‡2  LC|no2024083119
996 ‎‡2  BNE|XX1223166
996 ‎‡2  RERO|A011147468
996 ‎‡2  DNB|1193502373
996 ‎‡2  BNE|XX6105868
996 ‎‡2  BNE|XX5884487
996 ‎‡2  BNC|981058617075006706
996 ‎‡2  BNE|XX1010032
996 ‎‡2  ISNI|0000000059352749
996 ‎‡2  LC|no 93018240
996 ‎‡2  BNE|XX980840
996 ‎‡2  BNE|XX5596514
996 ‎‡2  BNE|XX1108905
996 ‎‡2  DNB|105626313X
996 ‎‡2  DNB|1022218476
996 ‎‡2  RERO|A012567058
996 ‎‡2  BNE|XX1559211
996 ‎‡2  BNE|XX1046691
996 ‎‡2  BNE|XX5875770
996 ‎‡2  SUDOC|027779602
996 ‎‡2  BNE|XX889815
996 ‎‡2  ISNI|0000000060148956
996 ‎‡2  ISNI|0000000059379167
996 ‎‡2  DNB|129093939
996 ‎‡2  BNE|XX899139
996 ‎‡2  BNE|XX1226154
996 ‎‡2  PLWABN|9810689768405606
996 ‎‡2  BNE|XX1142951
996 ‎‡2  ISNI|0000000059193768
996 ‎‡2  LC|no2010179181
996 ‎‡2  ISNI|0000000076896852
996 ‎‡2  BNE|XX1031526
996 ‎‡2  SUDOC|170151433
996 ‎‡2  SUDOC|192931970
996 ‎‡2  BNE|XX1267562
996 ‎‡2  J9U|987007267581105171
996 ‎‡2  BNE|XX4776664
996 ‎‡2  LC|n 2011068349
996 ‎‡2  RERO|A003238870
996 ‎‡2  BNE|XX998840
996 ‎‡2  NUKAT|n 2007088864
996 ‎‡2  SUDOC|026862212
996 ‎‡2  LC|no2005082195
996 ‎‡2  BNC|981058517429806706
996 ‎‡2  BNC|981058517205006706
996 ‎‡2  BNC|981058512823306706
996 ‎‡2  SUDOC|273730320
996 ‎‡2  NKC|mzk2005304593
996 ‎‡2  LC|no2021071965
996 ‎‡2  PTBNP|1548769
996 ‎‡2  PTBNP|1283067
996 ‎‡2  ISNI|000000035721888X
996 ‎‡2  LC|n 2001105615
996 ‎‡2  PLWABN|9810690918305606
996 ‎‡2  SUDOC|031452337
996 ‎‡2  ISNI|0000000061002887
996 ‎‡2  BNE|XX1099444
996 ‎‡2  DNB|1079819169
996 ‎‡2  BNE|XX5264245
996 ‎‡2  PTBNP|92037
996 ‎‡2  BNC|981058510893506706
996 ‎‡2  BNCHL|10000000000000000286868
996 ‎‡2  NTA|242685226
996 ‎‡2  BNE|XX999588
996 ‎‡2  BNF|17702524
996 ‎‡2  LC|no2023084313
996 ‎‡2  BNE|XX5756333
996 ‎‡2  BNE|XX908919
996 ‎‡2  DNB|1047946025
996 ‎‡2  NII|DA09715199
996 ‎‡2  BNC|981058598150206706
996 ‎‡2  DE633|pe41023033
996 ‎‡2  ISNI|0000000459590092
996 ‎‡2  BNE|XX1738765
997 ‎‡a  0 0 lived 0 0‏ ‎‡9  1‏