VIAF

Virtual International Authority File

Search

Leader     00000nz a2200037n 45 0
001     WKP|Q92050606  (VIAF cluster)  (Authority/Source Record)
003     WKP
005     20241120235942.0
008     241120nneanz||abbn n and d
035 ‎‡a  (WKP)Q92050606‏
024 ‎‡a  0000-0001-9281-4260‏ ‎‡2  orcid‏
035 ‎‡a  (OCoLC)Q92050606‏
100 0 ‎‡a  Zhen Zhen‏ ‎‡c  researcher (ORCID 0000-0001-9281-4260)‏ ‎‡9  en‏
400 0 ‎‡a  Zhen Zhen‏ ‎‡c  wetenschapper‏ ‎‡9  nl‏
670 ‎‡a  Author's An innovative lightweight 1D-CNN model for efficient monitoring of large-scale forest composition: a case study of Heilongjiang Province, China‏
670 ‎‡a  Author's Forest carbon sink in North China increased in recent two decades, but decreased in extreme drought years‏
670 ‎‡a  Author's Global and Geographically and Temporally Weighted Regression Models for Modeling PM2.5 in Heilongjiang, China from 2015 to 2018‏
670 ‎‡a  Author's Multi-Platform LiDAR for Non-Destructive Individual Aboveground Biomass Estimation for Changbai Larch (Larix olgensis Henry) Using a Hierarchical Bayesian Approach‏
670 ‎‡a  Author's Novel Features of Canopy Height Distribution for Aboveground Biomass Estimation Using Machine Learning: A Case Study in Natural Secondary Forests‏
670 ‎‡a  Author's Spatiotemporal Heterogeneity and the Key Influencing Factors of PM2.5 and PM10 in Heilongjiang, China from 2014 to 2018‏
670 ‎‡a  Author's The Effect of Synergistic Approaches of Features and Ensemble Learning Algorith on Aboveground Biomass Estimation of Natural Secondary Forests Based on ALS and Landsat 8‏
909 ‎‡a  (orcid) 0000000192814260‏ ‎‡9  1‏
919 ‎‡a  spatiotemporalheterogeneityandthekeyinfluencingfactorsofpm25andpm10inheilongjiangchinafrom2014to‏ ‎‡A  Spatiotemporal Heterogeneity and the Key Influencing Factors of PM2.5 and PM10 in Heilongjiang, China from 2014 to 2018‏ ‎‡9  1‏
919 ‎‡a  novelfeaturesofcanopyheightdistributionforabovegroundbiomassestimationusingmachinelearningacasestudyinnaturalsecondaryforests‏ ‎‡A  Novel Features of Canopy Height Distribution for Aboveground Biomass Estimation Using Machine Learning: A Case Study in Natural Secondary Forests‏ ‎‡9  1‏
919 ‎‡a  multiplatformlidarfornondestructiveindividualabovegroundbiomassestimationforchangbailarchlarixolgensishenryusingahierarchicalbayesianapproach‏ ‎‡A  Multi-Platform LiDAR for Non-Destructive Individual Aboveground Biomass Estimation for Changbai Larch (Larix olgensis Henry) Using a Hierarchical Bayesian Approach‏ ‎‡9  1‏
919 ‎‡a  globalandgeographicallyandtemporallyweightedregressionmodelsformodelingpm25inheilongjiangchinafrom2015to‏ ‎‡A  Global and Geographically and Temporally Weighted Regression Models for Modeling PM2.5 in Heilongjiang, China from 2015 to 2018‏ ‎‡9  1‏
919 ‎‡a  innovativelightweight1dcnnmodelforefficientmonitoringoflargescaleforestcompositionacasestudyofheilongjiangprovincechina‏ ‎‡A  An innovative lightweight 1D-CNN model for efficient monitoring of large-scale forest composition: a case study of Heilongjiang Province, China‏ ‎‡9  1‏
919 ‎‡a  effectofsynergisticapproachesoffeaturesandensemblelearningalgorithonabovegroundbiomassestimationofnaturalsecondaryforestsbasedonalsandlandsat8‏ ‎‡A  The Effect of Synergistic Approaches of Features and Ensemble Learning Algorith on Aboveground Biomass Estimation of Natural Secondary Forests Based on ALS and Landsat 8‏ ‎‡9  1‏
919 ‎‡a  forestcarbonsinkinnorthchinaincreasedinrecent2decadesbutdecreasedinextremedroughtyears‏ ‎‡A  Forest carbon sink in North China increased in recent two decades, but decreased in extreme drought years‏ ‎‡9  1‏
943 ‎‡a  201x‏ ‎‡A  2018‏ ‎‡9  2‏
996 ‎‡2  J9U|987007299947005171
996 ‎‡2  CAOONL|ncf11573028
996 ‎‡2  PLWABN|9810686184105606
996 ‎‡2  DNB|121385027
996 ‎‡2  DNB|121773788X
996 ‎‡2  ISNI|0000000067744179
996 ‎‡2  CYT|AC000519119
996 ‎‡2  DNB|1136732683
996 ‎‡2  SUDOC|198229054
996 ‎‡2  DNB|1326399128
996 ‎‡2  ISNI|000000008892868X
996 ‎‡2  SUDOC|067009573
996 ‎‡2  DNB|1307194699
996 ‎‡2  PLWABN|9813658375405606
996 ‎‡2  ISNI|0000000063326703
996 ‎‡2  LC|n 2003063815
996 ‎‡2  LC|n 99048930
996 ‎‡2  B2Q|0000385884
996 ‎‡2  BIBSYS|10103418
996 ‎‡2  DNB|130633652X
996 ‎‡2  NII|DA04163390
996 ‎‡2  DNB|1302354132
996 ‎‡2  DNB|103794626X
996 ‎‡2  NII|DA14301774
996 ‎‡2  DNB|1016240570
996 ‎‡2  LC|no2019124659
996 ‎‡2  DNB|1307195490
996 ‎‡2  NSK|000247558
996 ‎‡2  CYT|AC000653587
996 ‎‡2  DNB|133796809
996 ‎‡2  DNB|1192714377
996 ‎‡2  RERO|A006517910
996 ‎‡2  DNB|1234066025
996 ‎‡2  NDL|00688553
996 ‎‡2  DNB|139299386
996 ‎‡2  DNB|1337340448
996 ‎‡2  ISNI|0000000108504383
996 ‎‡2  LNB|LNC10-000191222
996 ‎‡2  LC|n 79020821
996 ‎‡2  SUDOC|180839756
996 ‎‡2  DNB|1072186500
996 ‎‡2  DNB|1060130033
996 ‎‡2  ICCU|TO0V475241
996 ‎‡2  DNB|1273118944
996 ‎‡2  BNF|16591477
996 ‎‡2  DNB|1192354974
996 ‎‡2  DNB|1136616101
996 ‎‡2  ISNI|0000000373037026
996 ‎‡2  DNB|1021718068
996 ‎‡2  RERO|A008843073
996 ‎‡2  BNC|981058518316306706
996 ‎‡2  BNF|12249624
996 ‎‡2  DNB|1026391393
996 ‎‡2  LC|no2020125683
996 ‎‡2  NSK|000451436
996 ‎‡2  NSK|000280749
996 ‎‡2  BNF|17820032
996 ‎‡2  NDL|01204351
996 ‎‡2  BIBSYS|10070086
996 ‎‡2  NII|DA03364422
996 ‎‡2  DNB|1345199570
996 ‎‡2  ISNI|0000000119447505
996 ‎‡2  DNB|138780692
996 ‎‡2  CAOONL|ncf10426538
996 ‎‡2  JPG|500116214
996 ‎‡2  DNB|1207305170
996 ‎‡2  LC|no2010197820
997 ‎‡a  0 0 lived 0 0‏ ‎‡9  1‏