Leader
|
|
|
00000nz a2200037n 45 0 |
001
|
|
|
WKP|Q42608425
(VIAF cluster)
(Authority/Source Record)
|
003
|
|
|
WKP |
005
|
|
|
20241121000204.0 |
008
|
|
|
241121nneanz||abbn n and d |
035
|
|
|
‡a
(WKP)Q42608425
|
024
|
|
|
‡a
0000-0001-5192-8878
‡2
orcid
|
024
|
|
|
‡a
22954229200
‡2
scopus
|
024
|
|
|
‡a
56637450500
‡2
scopus
|
035
|
|
|
‡a
(OCoLC)Q42608425
|
100
|
0 |
|
‡a
Heng Luo
‡9
ast
‡9
es
‡9
sl
|
400
|
0 |
|
‡a
Heng Luo
‡c
researcher (ORCID 0000-0001-5192-8878)
‡9
en
|
400
|
0 |
|
‡a
Heng Luo
‡c
onderzoeker
‡9
nl
|
670
|
|
|
‡a
Author's A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages
|
670
|
|
|
‡a
Author's Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data
|
670
|
|
|
‡a
Author's Combining Docking Pose Rank and Structure with Deep Learning Improves Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach
|
670
|
|
|
‡a
Author's Comparing genetic variants detected in the 1000 genomes project with SNPs determined by the International HapMap Consortium
|
670
|
|
|
‡a
Author's Comparison of RNA-seq and microarray-based models for clinical endpoint prediction
|
670
|
|
|
‡a
Author's Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists
|
670
|
|
|
‡a
Author's DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome
|
670
|
|
|
‡a
Author's Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets
|
670
|
|
|
‡a
Author's DPDR-CPI, a server that predicts Drug Positioning and Drug Repositioning via Chemical-Protein Interactome
|
670
|
|
|
‡a
Author's Drug repositioning for diabetes based on 'omics' data mining
|
670
|
|
|
‡a
Author's Estrogenic activity data extraction and in silico prediction show the endocrine disruption potential of bisphenol A replacement compounds
|
670
|
|
|
‡a
Author's Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome--clozapine-induced agranulocytosis as a case study
|
670
|
|
|
‡a
Author's Haystack, a web-based tool for metabolomics research
|
670
|
|
|
‡a
Author's HLADR: a database system for enhancing the discovery of biomarkers for predicting human leukocyte antigen-mediated idiosyncratic adverse drug reactions.
|
670
|
|
|
‡a
Author's Machine Learning Methods for Predicting HLA-Peptide Binding Activity
|
670
|
|
|
‡a
Author's Machine-Learning Prediction of Oral Drug-Induced Liver Injury (DILI) via Multiple Features and Endpoints
|
670
|
|
|
‡a
Author's Molecular Docking for Identification of Potential Targets for Drug Repurposing.
|
670
|
|
|
‡a
Author's Molecular Docking for Prediction and Interpretation of Adverse Drug Reactions
|
670
|
|
|
‡a
Author's Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions.
|
670
|
|
|
‡a
Author's SePreSA: a server for the prediction of populations susceptible to serious adverse drug reactions implementing the methodology of a chemical-protein interactome
|
670
|
|
|
‡a
Author's sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides
|
670
|
|
|
‡a
Author's Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis
|
670
|
|
|
‡a
Author's Whole genome sequencing of 35 individuals provides insights into the genetic architecture of Korean population
|
909
|
|
|
‡a
(scopus) 56637450500
‡9
1
|
909
|
|
|
‡a
(scopus) 22954229200
‡9
1
|
909
|
|
|
‡a
(orcid) 0000000151928878
‡9
1
|
919
|
|
|
‡a
estrogenicactivitydataextractionandinsilicopredictionshowtheendocrinedisruptionpotentialofbisphenolareplacementcompounds
‡A
Estrogenic activity data extraction and in silico prediction show the endocrine disruption potential of bisphenol A replacement compounds
‡9
1
|
919
|
|
|
‡a
drugrepositioningfordiabetesbasedonomicsdatamining
‡A
Drug repositioning for diabetes based on 'omics' data mining
‡9
1
|
919
|
|
|
‡a
dpdrcpiaserverthatpredictsdrugpositioninganddrugrepositioningviachemicalproteininteractome
‡A
DPDR-CPI, a server that predicts Drug Positioning and Drug Repositioning via Chemical-Protein Interactome
‡9
1
|
919
|
|
|
‡a
developmentandvalidationofdecisionforestmodelforestrogenreceptorbindingpredictionofchemicalsusinglargedatasets
‡A
Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets
‡9
1
|
919
|
|
|
‡a
ddicpiaserverthatpredictsdrugdruginteractionsthroughimplementingthechemicalproteininteractome
‡A
DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome
‡9
1
|
919
|
|
|
‡a
competitivemoleculardockingapproachforpredictingestrogenreceptorsubtypeαagonistsandantagonists
‡A
Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists
‡9
1
|
919
|
|
|
‡a
comparisonofrnaseqandmicroarraybasedmodelsforclinicalendpointprediction
‡A
Comparison of RNA-seq and microarray-based models for clinical endpoint prediction
‡9
1
|
919
|
|
|
‡a
comparinggeneticvariantsdetectedinthe1000genomesprojectwithsnpsdeterminedbytheinternationalhapmapconsortium
‡A
Comparing genetic variants detected in the 1000 genomes project with SNPs determined by the International HapMap Consortium
‡9
1
|
919
|
|
|
‡a
combiningdockingposerankandstructurewithdeeplearningimprovesproteinligandbindingmodepredictionoverabaselinedockingapproach
‡A
Combining Docking Pose Rank and Structure with Deep Learning Improves Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach
‡9
1
|
919
|
|
|
‡a
applyingnetworkanalysisandnebulaneighboredgesbasedandunbiasedleveragealgorithmtotoxcastdata
‡A
Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data
‡9
1
|
919
|
|
|
‡a
ratrnaseqtranscriptomicbodymapacross11organsand4developmentalstages
‡A
A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages
‡9
1
|
919
|
|
|
‡a
wholegenomesequencingof35individualsprovidesinsightsintothegeneticarchitectureofkoreanpopulation
‡A
Whole genome sequencing of 35 individuals provides insights into the genetic architecture of Korean population
‡9
1
|
919
|
|
|
‡a
understandingandpredictingbindingbetweenhumanleukocyteantigenshlasandpeptidesbynetworkanalysis
‡A
Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis
‡9
1
|
919
|
|
|
‡a
snebulaanetworkbasedalgorithmtopredictbindingbetweenhumanleukocyteantigensandpeptides
‡A
sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides
‡9
1
|
919
|
|
|
‡a
sepresaaserverforthepredictionofpopulationssusceptibletoseriousadversedrugreactionsimplementingthemethodologyofachemicalproteininteractome
‡A
SePreSA: a server for the prediction of populations susceptible to serious adverse drug reactions implementing the methodology of a chemical-protein interactome
‡9
1
|
919
|
|
|
‡a
moleculardockingtoidentifyassociationsbetweendrugsandclass1humanleukocyteantigensforpredictingidiosyncraticdrugreactions
‡A
Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions.
‡9
1
|
919
|
|
|
‡a
moleculardockingforpredictionandinterpretationofadversedrugreactions
‡A
Molecular Docking for Prediction and Interpretation of Adverse Drug Reactions
‡9
1
|
919
|
|
|
‡a
moleculardockingforidentificationofpotentialtargetsfordrugrepurposing
‡A
Molecular Docking for Identification of Potential Targets for Drug Repurposing.
‡9
1
|
919
|
|
|
‡a
machinelearningpredictionoforaldruginducedliverinjurydiliviamultiplefeaturesandendpoints
‡A
Machine-Learning Prediction of Oral Drug-Induced Liver Injury (DILI) via Multiple Features and Endpoints
‡9
1
|
919
|
|
|
‡a
machinelearningmethodsforpredictinghlapeptidebindingactivity
‡A
Machine Learning Methods for Predicting HLA-Peptide Binding Activity
‡9
1
|
919
|
|
|
‡a
hladradatabasesystemforenhancingthediscoveryofbiomarkersforpredictinghumanleukocyteantigenmediatedidiosyncraticadversedrugreactions
‡A
HLADR: a database system for enhancing the discovery of biomarkers for predicting human leukocyte antigen-mediated idiosyncratic adverse drug reactions.
‡9
1
|
919
|
|
|
‡a
haystackawebbasedtoolformetabolomicsresearch
‡A
Haystack, a web-based tool for metabolomics research
‡9
1
|
919
|
|
|
‡a
exploringofftargetsandoffsystemsforadversedrugreactionsviachemicalproteininteractomeclozapineinducedagranulocytosisasacasestudy
‡A
Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome--clozapine-induced agranulocytosis as a case study
‡9
1
|
996
|
|
|
‡2
LC|n 85009596
|
996
|
|
|
‡2
LC|n 2016005819
|
996
|
|
|
‡2
LC|n 2019183648
|
996
|
|
|
‡2
LC|n 2024054601
|
996
|
|
|
‡2
ISNI|0000000390665825
|
996
|
|
|
‡2
ISNI|000000047475485X
|
996
|
|
|
‡2
LC|no2002007915
|
996
|
|
|
‡2
SUDOC|234167459
|
996
|
|
|
‡2
SUDOC|188153675
|
996
|
|
|
‡2
CYT|AC000634688
|
996
|
|
|
‡2
LC|n 85157316
|
996
|
|
|
‡2
DNB|1306326249
|
996
|
|
|
‡2
DNB|136278027
|
996
|
|
|
‡2
DNB|1314805533
|
996
|
|
|
‡2
J9U|987008729440505171
|
996
|
|
|
‡2
CAOONL|ncf10219653
|
996
|
|
|
‡2
ISNI|0000000025419773
|
996
|
|
|
‡2
NTA|379205920
|
996
|
|
|
‡2
DNB|1059928922
|
996
|
|
|
‡2
LC|no2023009674
|
996
|
|
|
‡2
NLR|RU NLR AUTH 770185797
|
996
|
|
|
‡2
ISNI|0000000496889974
|
996
|
|
|
‡2
DNB|1216277311
|
996
|
|
|
‡2
ISNI|0000000433890708
|
996
|
|
|
‡2
DNB|140742654
|
996
|
|
|
‡2
LC|no2023108608
|
996
|
|
|
‡2
NTA|364178744
|
996
|
|
|
‡2
ISNI|0000000119017353
|
996
|
|
|
‡2
SUDOC|233328963
|
996
|
|
|
‡2
J9U|987007329049805171
|
996
|
|
|
‡2
LC|n 2014025988
|
996
|
|
|
‡2
CYT|AC000248855
|
996
|
|
|
‡2
J9U|987007418480805171
|
996
|
|
|
‡2
LC|no2020008002
|
996
|
|
|
‡2
PLWABN|9812423054605606
|
996
|
|
|
‡2
NTA|421076348
|
996
|
|
|
‡2
NTA|331437767
|
996
|
|
|
‡2
J9U|987007400139005171
|
996
|
|
|
‡2
LC|no2017168258
|
996
|
|
|
‡2
DNB|1163542768
|
996
|
|
|
‡2
NTA|416682391
|
996
|
|
|
‡2
DNB|1300089520
|
996
|
|
|
‡2
ISNI|0000000063691057
|
996
|
|
|
‡2
DNB|1309117675
|
996
|
|
|
‡2
CYT|AC000631942
|
996
|
|
|
‡2
BNF|16566506
|
996
|
|
|
‡2
DNB|121991407X
|
996
|
|
|
‡2
ISNI|000000007738498X
|
996
|
|
|
‡2
LC|nb2018005663
|
996
|
|
|
‡2
ISNI|0000000498921181
|
996
|
|
|
‡2
ISNI|0000000074867994
|
996
|
|
|
‡2
CYT|AC000649029
|
996
|
|
|
‡2
ISNI|0000000501161276
|
996
|
|
|
‡2
DNB|1284495957
|
996
|
|
|
‡2
BNF|16949426
|
996
|
|
|
‡2
DNB|1069694053
|
996
|
|
|
‡2
ISNI|0000000063692746
|
996
|
|
|
‡2
LC|no2011062650
|
996
|
|
|
‡2
CYT|AC000635150
|
996
|
|
|
‡2
DNB|119035669
|
996
|
|
|
‡2
NSK|000663521
|
997
|
|
|
‡a
0 0 lived 0 0
‡9
1
|
998
|
|
|
‡a
Heng, Luo
‡2
PLWABN|9812728699605606
‡3
exact name
|