Leader
|
|
|
00000nz a2200037n 45 0 |
001
|
|
|
WKP|Q104108234
(VIAF cluster)
(Authority/Source Record)
|
003
|
|
|
WKP |
005
|
|
|
20241020233101.0 |
008
|
|
|
241020nneanz||abbn n and d |
035
|
|
|
‡a
(WKP)Q104108234
|
024
|
|
|
‡a
0000-0003-0974-4092
‡2
orcid
|
035
|
|
|
‡a
(OCoLC)Q104108234
|
100
|
0 |
|
‡a
Francisco Carrillo-Perez
‡9
ca
|
400
|
0 |
|
‡a
Francisco Carrillo-Perez
‡c
researcher ORCID 0000-0003-0974-4092
‡9
en
|
400
|
0 |
|
‡a
Francisco Carrillo-Perez
‡c
investigador
‡9
es
|
400
|
0 |
|
‡a
Francisco Carrillo
‡c
onderzoeker
‡9
nl
|
670
|
|
|
‡a
Author's A deep-learning algorithm to classify skin lesions from mpox virus infection
|
670
|
|
|
‡a
Author's A Novel Automated Algorithm for Computing Lumbar Flexion Test Ratios Enhancing Athletes Objective Assessment of Low Back Pain
|
670
|
|
|
‡a
Author's Color, lightness, chroma, hue, and translucency adjustment potential of resin composites using CIEDE2000 color difference formula
|
670
|
|
|
‡a
Author's Comparison of Fusion Methodologies Using CNV and RNA-Seq for Cancer Classification: A Case Study on Non-Small-Cell Lung Cancer
|
670
|
|
|
‡a
Author's Composition Classification of Ultra-High Energy Cosmic Rays
|
670
|
|
|
‡a
Author's Comprehensive Pan-cancer Gene Signature Assessment through the Implementation of a Cascade Machine Learning System
|
670
|
|
|
‡a
Author's Correction: Performance comparison between multi-center histopathology datasets of a weakly-supervised deep learning model for pancreatic ductal adenocarcinoma detection
|
670
|
|
|
‡a
Author's COVID-19 Detection Method from Chest CT Scans via the Fusion of Slice Information and Lung Segmentation
|
670
|
|
|
‡a
Author's Data from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
|
670
|
|
|
‡a
Author's Deep learning to classify ultra-high-energy cosmic rays by means of PMT signals
|
670
|
|
|
‡a
Author's Does background color influence visual thresholds?
|
670
|
|
|
‡a
Author's Enhancing Breast Cancer Classification via Information and Multi-model Integration
|
670
|
|
|
‡a
Author's Ensemble Models for Covid Prediction in X-Ray Images
|
670
|
|
|
‡a
Author's Improving Classification of Ultra-High Energy Cosmic Rays Using Spacial Locality by Means of a Convolutional DNN
|
670
|
|
|
‡a
Author's KnowSeq R-Bioc package: The automatic smart gene expression tool for retrieving relevant biological knowledge
|
670
|
|
|
‡a
Author's Machine-Learning-Based Late Fusion on Multi-Omics and Multi-Scale Data for Non-Small-Cell Lung Cancer Diagnosis
|
670
|
|
|
‡a
Author's Non-small-cell lung cancer classification via RNA-Seq and histology imaging probability fusion
|
670
|
|
|
‡a
Author's Performance comparison between multi-center histopathology datasets of a weakly-supervised deep learning model for pancreatic ductal adenocarcinoma detection
|
670
|
|
|
‡a
Author's RNA-to-image multi-cancer synthesis using cascaded diffusion models
|
670
|
|
|
‡a
Author's SnapperML: A Python -based framework to improve machine learning operations
|
670
|
|
|
‡a
Author's Spatial cellular architecture predicts prognosis in glioblastoma
|
670
|
|
|
‡a
Author's Suppl. Data 1 from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
|
670
|
|
|
‡a
Author's Suppl Data 2 from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
|
670
|
|
|
‡a
Author's Supplementary Figures, Tables, Notes from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
|
670
|
|
|
‡a
Author's Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models
|
670
|
|
|
‡a
Author's Towards Digital Quantification of Ploidy from Pan-Cancer Digital Pathology Slides using Deep Learning
|
670
|
|
|
‡a
Author's Validation of mDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment
|
670
|
|
|
‡a
Author's Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
|
909
|
|
|
‡a
(orcid) 0000000309744092
‡9
1
|
919
|
|
|
‡a
deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection
‡A
A deep-learning algorithm to classify skin lesions from mpox virus infection
‡9
1
|
919
|
|
|
‡a
novelautomatedalgorithmforcomputinglumbarflexiontestratiosenhancingathletesobjectiveassessmentoflowbackpain
‡A
A Novel Automated Algorithm for Computing Lumbar Flexion Test Ratios Enhancing Athletes Objective Assessment of Low Back Pain
‡9
1
|
919
|
|
|
‡a
colorlightnesschromahueandtranslucencyadjustmentpotentialofresincompositesusingciede2000colordifferenceformula
‡A
Color, lightness, chroma, hue, and translucency adjustment potential of resin composites using CIEDE2000 color difference formula
‡9
1
|
919
|
|
|
‡a
comparisonoffusionmethodologiesusingcnvandrnaseqforcancerclassificationacasestudyonnonsmallcelllungcancer
‡A
Comparison of Fusion Methodologies Using CNV and RNA-Seq for Cancer Classification: A Case Study on Non-Small-Cell Lung Cancer
‡9
1
|
919
|
|
|
‡a
compositionclassificationofultrahighenergycosmicrays
‡A
Composition Classification of Ultra-High Energy Cosmic Rays
‡9
1
|
919
|
|
|
‡a
comprehensivepancancergenesignatureassessmentthroughtheimplementationofacascademachinelearningsystem
‡A
Comprehensive Pan-cancer Gene Signature Assessment through the Implementation of a Cascade Machine Learning System
‡9
1
|
919
|
|
|
‡a
correctionperformancecomparisonbetweenmulticenterhistopathologydatasetsofaweaklysuperviseddeeplearningmodelforpancreaticductaladenocarcinomadetection
‡A
Correction: Performance comparison between multi-center histopathology datasets of a weakly-supervised deep learning model for pancreatic ductal adenocarcinoma detection
‡9
1
|
919
|
|
|
‡a
covid19detectionmethodfromchestctscansviathefusionofsliceinformationandlungsegmentation
‡A
COVID-19 Detection Method from Chest CT Scans via the Fusion of Slice Information and Lung Segmentation
‡9
1
|
919
|
|
|
‡a
datafromwholeslideimagingbasedpredictionoftp53mutationsidentifiesanaggressivediseasephenotypeinprostatecancer
‡A
Data from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
‡9
1
|
919
|
|
|
‡a
deeplearningtoclassifyultrahighenergycosmicraysbymeansofpmtsignals
‡A
Deep learning to classify ultra-high-energy cosmic rays by means of PMT signals
‡9
1
|
919
|
|
|
‡a
doesbackgroundcolorinfluencevisualthresholds
‡A
Does background color influence visual thresholds?
‡9
1
|
919
|
|
|
‡a
enhancingbreastcancerclassificationviainformationandmultimodelintegration
‡A
Enhancing Breast Cancer Classification via Information and Multi-model Integration
‡9
1
|
919
|
|
|
‡a
ensemblemodelsforcovidpredictionin10rayimages
‡A
Ensemble Models for Covid Prediction in X-Ray Images
‡9
1
|
919
|
|
|
‡a
improvingclassificationofultrahighenergycosmicraysusingspaciallocalitybymeansofaconvolutionaldnn
‡A
Improving Classification of Ultra-High Energy Cosmic Rays Using Spacial Locality by Means of a Convolutional DNN
‡9
1
|
919
|
|
|
‡a
knowseqrbiocpackagetheautomaticsmartgeneexpressiontoolforretrievingrelevantbiologicalknowledge
‡A
KnowSeq R-Bioc package: The automatic smart gene expression tool for retrieving relevant biological knowledge
‡9
1
|
919
|
|
|
‡a
machinelearningbasedlatefusiononmultiomicsandmultiscaledatafornonsmallcelllungcancerdiagnosis
‡A
Machine-Learning-Based Late Fusion on Multi-Omics and Multi-Scale Data for Non-Small-Cell Lung Cancer Diagnosis
‡9
1
|
919
|
|
|
‡a
nonsmallcelllungcancerclassificationviarnaseqandhistologyimagingprobabilityfusion
‡A
Non-small-cell lung cancer classification via RNA-Seq and histology imaging probability fusion
‡9
1
|
919
|
|
|
‡a
performancecomparisonbetweenmulticenterhistopathologydatasetsofaweaklysuperviseddeeplearningmodelforpancreaticductaladenocarcinomadetection
‡A
Performance comparison between multi-center histopathology datasets of a weakly-supervised deep learning model for pancreatic ductal adenocarcinoma detection
‡9
1
|
919
|
|
|
‡a
rnatoimagemulticancersynthesisusingcascadeddiffusionmodels
‡A
RNA-to-image multi-cancer synthesis using cascaded diffusion models
‡9
1
|
919
|
|
|
‡a
snappermla Python basedframeworktoimprovemachinelearningoperations
‡A
SnapperML: A Python -based framework to improve machine learning operations
‡9
1
|
919
|
|
|
‡a
spatialcellulararchitecturepredictsprognosisinglioblastoma
‡A
Spatial cellular architecture predicts prognosis in glioblastoma
‡9
1
|
919
|
|
|
‡a
suppldata1fromwholeslideimagingbasedpredictionoftp53mutationsidentifiesanaggressivediseasephenotypeinprostatecancer
‡A
Suppl. Data 1 from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
‡9
1
|
919
|
|
|
‡a
suppldata2fromwholeslideimagingbasedpredictionoftp53mutationsidentifiesanaggressivediseasephenotypeinprostatecancer
‡A
Suppl Data 2 from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
‡9
1
|
919
|
|
|
‡a
supplementaryfigurestablesnotesfromwholeslideimagingbasedpredictionoftp53mutationsidentifiesanaggressivediseasephenotypeinprostatecancer
‡A
Supplementary Figures, Tables, Notes from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
‡9
1
|
919
|
|
|
‡a
syntheticwholeslideimagetilegenerationwithgeneexpressionprofileinfuseddeepgenerativemodels
‡A
Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models
‡9
1
|
919
|
|
|
‡a
towardsdigitalquantificationofploidyfrompancancerdigitalpathologyslidesusingdeeplearning
‡A
Towards Digital Quantification of Ploidy from Pan-Cancer Digital Pathology Slides using Deep Learning
‡9
1
|
919
|
|
|
‡a
validationofmduranceawearablesurfaceelectromyographysystemformuscleactivityassessment
‡A
Validation of mDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment
‡9
1
|
919
|
|
|
‡a
wholeslideimagingbasedpredictionoftp53mutationsidentifiesanaggressivediseasephenotypeinprostatecancer
‡A
Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
‡9
1
|
996
|
|
|
‡2
ISNI|0000000060488379
|
996
|
|
|
‡2
NII|DA09809689
|
996
|
|
|
‡2
SUDOC|128448571
|
996
|
|
|
‡2
BNCHL|10000000000000000286276
|
996
|
|
|
‡2
BNC|981058509763106706
|
996
|
|
|
‡2
BNE|XX829369
|
996
|
|
|
‡2
LC|n 84149468
|
996
|
|
|
‡2
DNB|1056558962
|
996
|
|
|
‡2
DNB|118592726
|
996
|
|
|
‡2
ISNI|0000000060744280
|
996
|
|
|
‡2
BNE|XX1527417
|
996
|
|
|
‡2
BNC|981058512175406706
|
996
|
|
|
‡2
ISNI|0000000063039915
|
996
|
|
|
‡2
LC|n 91071570
|
996
|
|
|
‡2
ISNI|0000000060683895
|
996
|
|
|
‡2
BNE|XX1577552
|
996
|
|
|
‡2
ISNI|0000000060500833
|
996
|
|
|
‡2
BNE|XX1682343
|
996
|
|
|
‡2
ISNI|0000000059949297
|
996
|
|
|
‡2
KRNLK|KAC2019F7782
|
996
|
|
|
‡2
BNE|XX5104258
|
996
|
|
|
‡2
BNE|XX899588
|
996
|
|
|
‡2
NSK|000774771
|
996
|
|
|
‡2
SUDOC|087262460
|
996
|
|
|
‡2
ISNI|0000000118623343
|
996
|
|
|
‡2
ISNI|0000000059206223
|
996
|
|
|
‡2
LC|n 50018303
|
996
|
|
|
‡2
BNC|981058517269006706
|
996
|
|
|
‡2
BNE|XX1100650
|
996
|
|
|
‡2
SUDOC|031775659
|
996
|
|
|
‡2
BNE|XX5400008
|
996
|
|
|
‡2
SUDOC|161984517
|
996
|
|
|
‡2
ISNI|0000000499229154
|
996
|
|
|
‡2
LC|n 82142199
|
996
|
|
|
‡2
BNE|XX885527
|
996
|
|
|
‡2
BNE|XX1582715
|
996
|
|
|
‡2
J9U|987007376131705171
|
996
|
|
|
‡2
SUDOC|137826265
|
996
|
|
|
‡2
BNC|981058522616806706
|
996
|
|
|
‡2
BNE|XX1722658
|
996
|
|
|
‡2
BNE|XX1371947
|
996
|
|
|
‡2
ISNI|0000000496464888
|
996
|
|
|
‡2
BNE|XX1316532
|
996
|
|
|
‡2
SUDOC|055820034
|
996
|
|
|
‡2
SUDOC|084712422
|
996
|
|
|
‡2
SUDOC|069930791
|
996
|
|
|
‡2
SUDOC|104823046
|
996
|
|
|
‡2
SUDOC|149272197
|
996
|
|
|
‡2
RERO|A027438393
|
996
|
|
|
‡2
LC|n 97071984
|
996
|
|
|
‡2
DNB|1056404329
|
996
|
|
|
‡2
ISNI|0000000434966604
|
996
|
|
|
‡2
BNE|XX902066
|
996
|
|
|
‡2
RERO|A003718817
|
996
|
|
|
‡2
BNCHL|10000000000000000100613
|
996
|
|
|
‡2
BNE|XX1395245
|
996
|
|
|
‡2
BNE|XX1507074
|
996
|
|
|
‡2
NII|DA12296287
|
996
|
|
|
‡2
BNCHL|10000000000000000037025
|
996
|
|
|
‡2
ISNI|0000000131122279
|
996
|
|
|
‡2
BNE|XX1053315
|
996
|
|
|
‡2
BNC|981058518916806706
|
996
|
|
|
‡2
LC|n 93006509
|
996
|
|
|
‡2
BNE|XX5708496
|
996
|
|
|
‡2
ISNI|0000000117636900
|
996
|
|
|
‡2
PTBNP|1609720
|
996
|
|
|
‡2
ISNI|0000000066366356
|
996
|
|
|
‡2
DNB|1089538626
|
996
|
|
|
‡2
ISNI|0000000045615616
|
996
|
|
|
‡2
BNE|XX975918
|
996
|
|
|
‡2
BNE|XX956924
|
996
|
|
|
‡2
BNE|XX4872065
|
996
|
|
|
‡2
NII|DA18464511
|
996
|
|
|
‡2
PTBNP|164425
|
996
|
|
|
‡2
NUKAT|n 2006002676
|
996
|
|
|
‡2
DNB|1056504277
|
996
|
|
|
‡2
BNE|XX1118013
|
996
|
|
|
‡2
ISNI|0000000078801319
|
996
|
|
|
‡2
ISNI|0000000077303609
|
996
|
|
|
‡2
ISNI|0000000113441188
|
996
|
|
|
‡2
BNE|XX1020816
|
996
|
|
|
‡2
J9U|987007319396405171
|
996
|
|
|
‡2
SUDOC|162366299
|
996
|
|
|
‡2
SUDOC|124622755
|
996
|
|
|
‡2
LC|no2007133547
|
996
|
|
|
‡2
LC|no2010133130
|
996
|
|
|
‡2
BNC|981058511517706706
|
996
|
|
|
‡2
BNE|XX970564
|
996
|
|
|
‡2
BNE|XX1789331
|
996
|
|
|
‡2
LNB|LNC10-000199935
|
996
|
|
|
‡2
ISNI|0000000026977283
|
996
|
|
|
‡2
LC|no2015136173
|
996
|
|
|
‡2
ISNI|0000000078259697
|
996
|
|
|
‡2
BNE|XX949986
|
996
|
|
|
‡2
ISNI|0000000033782345
|
996
|
|
|
‡2
LC|n 2016019860
|
996
|
|
|
‡2
BNE|XX841476
|
996
|
|
|
‡2
ISNI|0000000058171620
|
996
|
|
|
‡2
LC|no2022066981
|
996
|
|
|
‡2
ISNI|0000000118615183
|
996
|
|
|
‡2
BNE|XX1784489
|
996
|
|
|
‡2
DNB|133425819
|
996
|
|
|
‡2
LC|nr2004030444
|
996
|
|
|
‡2
BNE|XX1150177
|
996
|
|
|
‡2
BNE|XX1219485
|
996
|
|
|
‡2
BIBSYS|6039142
|
996
|
|
|
‡2
DNB|115721813X
|
996
|
|
|
‡2
NTA|307586189
|
996
|
|
|
‡2
BNE|XX1649489
|
996
|
|
|
‡2
BNE|XX1652133
|
996
|
|
|
‡2
BNF|15926283
|
996
|
|
|
‡2
BNE|XX5116435
|
996
|
|
|
‡2
BNE|XX1050911
|
996
|
|
|
‡2
ARBABN|000038555
|
996
|
|
|
‡2
LC|no 00098040
|
996
|
|
|
‡2
LC|no2010011248
|
996
|
|
|
‡2
NKC|jo20211116959
|
996
|
|
|
‡2
DNB|1047090295
|
996
|
|
|
‡2
ISNI|0000000059473452
|
996
|
|
|
‡2
BNE|XX4606198
|
996
|
|
|
‡2
SUDOC|068860412
|
996
|
|
|
‡2
BNC|981058520346406706
|
996
|
|
|
‡2
BNE|XX984547
|
996
|
|
|
‡2
BNF|12536252
|
996
|
|
|
‡2
LC|n 2001028077
|
996
|
|
|
‡2
BNE|XX1714101
|
996
|
|
|
‡2
LC|n 95013316
|
996
|
|
|
‡2
LC|no2010028084
|
996
|
|
|
‡2
RERO|A003718757
|
996
|
|
|
‡2
LC|no2002046431
|
996
|
|
|
‡2
LC|no2009159362
|
996
|
|
|
‡2
SUDOC|269984712
|
996
|
|
|
‡2
PTBNP|1187002
|
996
|
|
|
‡2
BNF|11886480
|
996
|
|
|
‡2
BNE|XX924569
|
996
|
|
|
‡2
ISNI|0000000001932249
|
996
|
|
|
‡2
NKC|pag2009500125
|
996
|
|
|
‡2
ISNI|0000000104405898
|
996
|
|
|
‡2
LC|n 81136031
|
996
|
|
|
‡2
ISNI|0000000439826272
|
996
|
|
|
‡2
ISNI|0000000114509930
|
996
|
|
|
‡2
BNE|XX1067186
|
996
|
|
|
‡2
PLWABN|9810690725305606
|
996
|
|
|
‡2
BNE|XX4615716
|
996
|
|
|
‡2
BNE|XX6314989
|
996
|
|
|
‡2
BNE|XX4753189
|
996
|
|
|
‡2
RERO|A025462266
|
996
|
|
|
‡2
SUDOC|276727541
|
996
|
|
|
‡2
BNE|XX5045296
|
996
|
|
|
‡2
RERO|A009205265
|
996
|
|
|
‡2
SUDOC|221617558
|
996
|
|
|
‡2
BNC|981058515426906706
|
996
|
|
|
‡2
RERO|A003718809
|
996
|
|
|
‡2
BNE|XX946536
|
996
|
|
|
‡2
PTBNP|1155324
|
996
|
|
|
‡2
SUDOC|05915571X
|
996
|
|
|
‡2
DNB|1147647518
|
996
|
|
|
‡2
DNB|1157340784
|
996
|
|
|
‡2
SUDOC|233196447
|
996
|
|
|
‡2
DNB|171038649
|
996
|
|
|
‡2
ISNI|0000000059474412
|
996
|
|
|
‡2
BNE|XX5856500
|
996
|
|
|
‡2
BNE|XX876088
|
996
|
|
|
‡2
ISNI|0000000500998912
|
996
|
|
|
‡2
LC|no2018004994
|
996
|
|
|
‡2
LC|no2016049340
|
996
|
|
|
‡2
ISNI|0000000049325712
|
996
|
|
|
‡2
DNB|124116590
|
996
|
|
|
‡2
BNE|XX881635
|
996
|
|
|
‡2
SUDOC|250416794
|
996
|
|
|
‡2
DNB|1073841073
|
996
|
|
|
‡2
ISNI|0000000059446972
|
996
|
|
|
‡2
ISNI|0000000108762059
|
996
|
|
|
‡2
LC|nb2009002180
|
996
|
|
|
‡2
BNE|XX948918
|
996
|
|
|
‡2
DNB|1053038577
|
996
|
|
|
‡2
LC|n 2005052416
|
996
|
|
|
‡2
ISNI|0000000371876213
|
996
|
|
|
‡2
BNE|XX6025698
|
996
|
|
|
‡2
DNB|119279649
|
996
|
|
|
‡2
JPG|500039973
|
996
|
|
|
‡2
RERO|A020336655
|
996
|
|
|
‡2
LC|nb2017003274
|
996
|
|
|
‡2
ISNI|000000005970947X
|
996
|
|
|
‡2
DNB|1089200242
|
996
|
|
|
‡2
DNB|143464108
|
996
|
|
|
‡2
SUDOC|155940767
|
996
|
|
|
‡2
ISNI|0000000059654501
|
996
|
|
|
‡2
BNE|XX951441
|
996
|
|
|
‡2
BNC|981058516211906706
|
996
|
|
|
‡2
BNC|981058615030006706
|
996
|
|
|
‡2
SUDOC|174558163
|
996
|
|
|
‡2
PLWABN|9810699039405606
|
996
|
|
|
‡2
SUDOC|176882812
|
996
|
|
|
‡2
ISNI|0000000047646563
|
996
|
|
|
‡2
ISNI|0000000387171007
|
996
|
|
|
‡2
BNE|XX5466834
|
996
|
|
|
‡2
ISNI|0000000393351784
|
996
|
|
|
‡2
BNE|XX1647354
|
996
|
|
|
‡2
LC|no2022000431
|
996
|
|
|
‡2
RERO|A025138711
|
996
|
|
|
‡2
BNE|XX1278511
|
996
|
|
|
‡2
DNB|1157194338
|
996
|
|
|
‡2
BNE|XX4978472
|
996
|
|
|
‡2
BNE|XX6016705
|
996
|
|
|
‡2
LC|no2013130038
|
996
|
|
|
‡2
JPG|500342126
|
996
|
|
|
‡2
BNE|XX5691318
|
996
|
|
|
‡2
ISNI|000000037868234X
|
996
|
|
|
‡2
NTA|182243206
|
996
|
|
|
‡2
ISNI|0000000081613749
|
996
|
|
|
‡2
NII|DA10611576
|
996
|
|
|
‡2
SUDOC|275012131
|
996
|
|
|
‡2
BNE|XX5533670
|
996
|
|
|
‡2
J9U|987007275883605171
|
996
|
|
|
‡2
RERO|A003254328
|
996
|
|
|
‡2
LC|n 2011082818
|
996
|
|
|
‡2
ISNI|0000000059478237
|
996
|
|
|
‡2
BNF|16202271
|
996
|
|
|
‡2
BNE|XX1043318
|
996
|
|
|
‡2
BNE|XX820697
|
996
|
|
|
‡2
SUDOC|111501032
|
996
|
|
|
‡2
ISNI|0000000041850635
|
996
|
|
|
‡2
NTA|154092827
|
996
|
|
|
‡2
PLWABN|9814293093005606
|
996
|
|
|
‡2
LC|n 85277830
|
996
|
|
|
‡2
ISNI|0000000370912139
|
996
|
|
|
‡2
LC|n 86820310
|
996
|
|
|
‡2
ISNI|0000000111102334
|
996
|
|
|
‡2
LC|ns2015000620
|
996
|
|
|
‡2
BNE|XX973855
|
996
|
|
|
‡2
LC|nr 00025404
|
996
|
|
|
‡2
RERO|A009109586
|
996
|
|
|
‡2
LC|ns2015000154
|
996
|
|
|
‡2
ISNI|000000005964379X
|
996
|
|
|
‡2
LC|nr2003018939
|
996
|
|
|
‡2
BNE|XX1626718
|
996
|
|
|
‡2
BNE|XX5234501
|
996
|
|
|
‡2
ISNI|0000000106532639
|
996
|
|
|
‡2
SUDOC|249737043
|
996
|
|
|
‡2
BNCHL|10000000000000000024476
|
996
|
|
|
‡2
NKC|jx20051121006
|
996
|
|
|
‡2
NUKAT|n 2006118189
|
996
|
|
|
‡2
BNE|XX5542838
|
996
|
|
|
‡2
BNE|XX1728301
|
996
|
|
|
‡2
LC|no2018067288
|
996
|
|
|
‡2
ISNI|0000000072115262
|
996
|
|
|
‡2
ISNI|0000000060917524
|
996
|
|
|
‡2
DNB|1244837989
|
996
|
|
|
‡2
LC|n 87879525
|
997
|
|
|
‡a
0 0 lived 0 0
‡9
1
|