VIAF

Virtual International Authority File

Search

Leader 00000nz a2200037n 45 0
001 WKP|Q104108234 (VIAF cluster) (Authority/Source Record)
003 WKP
005 20241020233101.0
008 241020nneanz||abbn n and d
035 ‎‡a (WKP)Q104108234‏
024 ‎‡a 0000-0003-0974-4092‏ ‎‡2 orcid‏
035 ‎‡a (OCoLC)Q104108234‏
100 0 ‎‡a Francisco Carrillo-Perez‏ ‎‡9 ca‏
400 0 ‎‡a Francisco Carrillo-Perez‏ ‎‡c researcher ORCID 0000-0003-0974-4092‏ ‎‡9 en‏
400 0 ‎‡a Francisco Carrillo-Perez‏ ‎‡c investigador‏ ‎‡9 es‏
400 0 ‎‡a Francisco Carrillo‏ ‎‡c onderzoeker‏ ‎‡9 nl‏
670 ‎‡a Author's A deep-learning algorithm to classify skin lesions from mpox virus infection‏
670 ‎‡a Author's A Novel Automated Algorithm for Computing Lumbar Flexion Test Ratios Enhancing Athletes Objective Assessment of Low Back Pain‏
670 ‎‡a Author's Color, lightness, chroma, hue, and translucency adjustment potential of resin composites using CIEDE2000 color difference formula‏
670 ‎‡a Author's Comparison of Fusion Methodologies Using CNV and RNA-Seq for Cancer Classification: A Case Study on Non-Small-Cell Lung Cancer‏
670 ‎‡a Author's Composition Classification of Ultra-High Energy Cosmic Rays‏
670 ‎‡a Author's Comprehensive Pan-cancer Gene Signature Assessment through the Implementation of a Cascade Machine Learning System‏
670 ‎‡a Author's Correction: Performance comparison between multi-center histopathology datasets of a weakly-supervised deep learning model for pancreatic ductal adenocarcinoma detection‏
670 ‎‡a Author's COVID-19 Detection Method from Chest CT Scans via the Fusion of Slice Information and Lung Segmentation‏
670 ‎‡a Author's Data from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer‏
670 ‎‡a Author's Deep learning to classify ultra-high-energy cosmic rays by means of PMT signals‏
670 ‎‡a Author's Does background color influence visual thresholds?‏
670 ‎‡a Author's Enhancing Breast Cancer Classification via Information and Multi-model Integration‏
670 ‎‡a Author's Ensemble Models for Covid Prediction in X-Ray Images‏
670 ‎‡a Author's Improving Classification of Ultra-High Energy Cosmic Rays Using Spacial Locality by Means of a Convolutional DNN‏
670 ‎‡a Author's KnowSeq R-Bioc package: The automatic smart gene expression tool for retrieving relevant biological knowledge‏
670 ‎‡a Author's Machine-Learning-Based Late Fusion on Multi-Omics and Multi-Scale Data for Non-Small-Cell Lung Cancer Diagnosis‏
670 ‎‡a Author's Non-small-cell lung cancer classification via RNA-Seq and histology imaging probability fusion‏
670 ‎‡a Author's Performance comparison between multi-center histopathology datasets of a weakly-supervised deep learning model for pancreatic ductal adenocarcinoma detection‏
670 ‎‡a Author's RNA-to-image multi-cancer synthesis using cascaded diffusion models‏
670 ‎‡a Author's SnapperML: A Python -based framework to improve machine learning operations‏
670 ‎‡a Author's Spatial cellular architecture predicts prognosis in glioblastoma‏
670 ‎‡a Author's Suppl. Data 1 from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer‏
670 ‎‡a Author's Suppl Data 2 from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer‏
670 ‎‡a Author's Supplementary Figures, Tables, Notes from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer‏
670 ‎‡a Author's Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models‏
670 ‎‡a Author's Towards Digital Quantification of Ploidy from Pan-Cancer Digital Pathology Slides using Deep Learning‏
670 ‎‡a Author's Validation of mDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment‏
670 ‎‡a Author's Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer‏
909 ‎‡a (orcid) 0000000309744092‏ ‎‡9 1‏
919 ‎‡a deeplearningalgorithmtoclassifyskinlesionsfrommpoxvirusinfection‏ ‎‡A A deep-learning algorithm to classify skin lesions from mpox virus infection‏ ‎‡9 1‏
919 ‎‡a novelautomatedalgorithmforcomputinglumbarflexiontestratiosenhancingathletesobjectiveassessmentoflowbackpain‏ ‎‡A A Novel Automated Algorithm for Computing Lumbar Flexion Test Ratios Enhancing Athletes Objective Assessment of Low Back Pain‏ ‎‡9 1‏
919 ‎‡a colorlightnesschromahueandtranslucencyadjustmentpotentialofresincompositesusingciede2000colordifferenceformula‏ ‎‡A Color, lightness, chroma, hue, and translucency adjustment potential of resin composites using CIEDE2000 color difference formula‏ ‎‡9 1‏
919 ‎‡a comparisonoffusionmethodologiesusingcnvandrnaseqforcancerclassificationacasestudyonnonsmallcelllungcancer‏ ‎‡A Comparison of Fusion Methodologies Using CNV and RNA-Seq for Cancer Classification: A Case Study on Non-Small-Cell Lung Cancer‏ ‎‡9 1‏
919 ‎‡a compositionclassificationofultrahighenergycosmicrays‏ ‎‡A Composition Classification of Ultra-High Energy Cosmic Rays‏ ‎‡9 1‏
919 ‎‡a comprehensivepancancergenesignatureassessmentthroughtheimplementationofacascademachinelearningsystem‏ ‎‡A Comprehensive Pan-cancer Gene Signature Assessment through the Implementation of a Cascade Machine Learning System‏ ‎‡9 1‏
919 ‎‡a correctionperformancecomparisonbetweenmulticenterhistopathologydatasetsofaweaklysuperviseddeeplearningmodelforpancreaticductaladenocarcinomadetection‏ ‎‡A Correction: Performance comparison between multi-center histopathology datasets of a weakly-supervised deep learning model for pancreatic ductal adenocarcinoma detection‏ ‎‡9 1‏
919 ‎‡a covid19detectionmethodfromchestctscansviathefusionofsliceinformationandlungsegmentation‏ ‎‡A COVID-19 Detection Method from Chest CT Scans via the Fusion of Slice Information and Lung Segmentation‏ ‎‡9 1‏
919 ‎‡a datafromwholeslideimagingbasedpredictionoftp53mutationsidentifiesanaggressivediseasephenotypeinprostatecancer‏ ‎‡A Data from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer‏ ‎‡9 1‏
919 ‎‡a deeplearningtoclassifyultrahighenergycosmicraysbymeansofpmtsignals‏ ‎‡A Deep learning to classify ultra-high-energy cosmic rays by means of PMT signals‏ ‎‡9 1‏
919 ‎‡a doesbackgroundcolorinfluencevisualthresholds‏ ‎‡A Does background color influence visual thresholds?‏ ‎‡9 1‏
919 ‎‡a enhancingbreastcancerclassificationviainformationandmultimodelintegration‏ ‎‡A Enhancing Breast Cancer Classification via Information and Multi-model Integration‏ ‎‡9 1‏
919 ‎‡a ensemblemodelsforcovidpredictionin10rayimages‏ ‎‡A Ensemble Models for Covid Prediction in X-Ray Images‏ ‎‡9 1‏
919 ‎‡a improvingclassificationofultrahighenergycosmicraysusingspaciallocalitybymeansofaconvolutionaldnn‏ ‎‡A Improving Classification of Ultra-High Energy Cosmic Rays Using Spacial Locality by Means of a Convolutional DNN‏ ‎‡9 1‏
919 ‎‡a knowseqrbiocpackagetheautomaticsmartgeneexpressiontoolforretrievingrelevantbiologicalknowledge‏ ‎‡A KnowSeq R-Bioc package: The automatic smart gene expression tool for retrieving relevant biological knowledge‏ ‎‡9 1‏
919 ‎‡a machinelearningbasedlatefusiononmultiomicsandmultiscaledatafornonsmallcelllungcancerdiagnosis‏ ‎‡A Machine-Learning-Based Late Fusion on Multi-Omics and Multi-Scale Data for Non-Small-Cell Lung Cancer Diagnosis‏ ‎‡9 1‏
919 ‎‡a nonsmallcelllungcancerclassificationviarnaseqandhistologyimagingprobabilityfusion‏ ‎‡A Non-small-cell lung cancer classification via RNA-Seq and histology imaging probability fusion‏ ‎‡9 1‏
919 ‎‡a performancecomparisonbetweenmulticenterhistopathologydatasetsofaweaklysuperviseddeeplearningmodelforpancreaticductaladenocarcinomadetection‏ ‎‡A Performance comparison between multi-center histopathology datasets of a weakly-supervised deep learning model for pancreatic ductal adenocarcinoma detection‏ ‎‡9 1‏
919 ‎‡a rnatoimagemulticancersynthesisusingcascadeddiffusionmodels‏ ‎‡A RNA-to-image multi-cancer synthesis using cascaded diffusion models‏ ‎‡9 1‏
919 ‎‡a snappermla Python basedframeworktoimprovemachinelearningoperations‏ ‎‡A SnapperML: A Python -based framework to improve machine learning operations‏ ‎‡9 1‏
919 ‎‡a spatialcellulararchitecturepredictsprognosisinglioblastoma‏ ‎‡A Spatial cellular architecture predicts prognosis in glioblastoma‏ ‎‡9 1‏
919 ‎‡a suppldata1fromwholeslideimagingbasedpredictionoftp53mutationsidentifiesanaggressivediseasephenotypeinprostatecancer‏ ‎‡A Suppl. Data 1 from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer‏ ‎‡9 1‏
919 ‎‡a suppldata2fromwholeslideimagingbasedpredictionoftp53mutationsidentifiesanaggressivediseasephenotypeinprostatecancer‏ ‎‡A Suppl Data 2 from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer‏ ‎‡9 1‏
919 ‎‡a supplementaryfigurestablesnotesfromwholeslideimagingbasedpredictionoftp53mutationsidentifiesanaggressivediseasephenotypeinprostatecancer‏ ‎‡A Supplementary Figures, Tables, Notes from Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer‏ ‎‡9 1‏
919 ‎‡a syntheticwholeslideimagetilegenerationwithgeneexpressionprofileinfuseddeepgenerativemodels‏ ‎‡A Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models‏ ‎‡9 1‏
919 ‎‡a towardsdigitalquantificationofploidyfrompancancerdigitalpathologyslidesusingdeeplearning‏ ‎‡A Towards Digital Quantification of Ploidy from Pan-Cancer Digital Pathology Slides using Deep Learning‏ ‎‡9 1‏
919 ‎‡a validationofmduranceawearablesurfaceelectromyographysystemformuscleactivityassessment‏ ‎‡A Validation of mDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment‏ ‎‡9 1‏
919 ‎‡a wholeslideimagingbasedpredictionoftp53mutationsidentifiesanaggressivediseasephenotypeinprostatecancer‏ ‎‡A Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer‏ ‎‡9 1‏
996 ‎‡2 ISNI|0000000060488379
996 ‎‡2 NII|DA09809689
996 ‎‡2 SUDOC|128448571
996 ‎‡2 BNCHL|10000000000000000286276
996 ‎‡2 BNC|981058509763106706
996 ‎‡2 BNE|XX829369
996 ‎‡2 LC|n 84149468
996 ‎‡2 DNB|1056558962
996 ‎‡2 DNB|118592726
996 ‎‡2 ISNI|0000000060744280
996 ‎‡2 BNE|XX1527417
996 ‎‡2 BNC|981058512175406706
996 ‎‡2 ISNI|0000000063039915
996 ‎‡2 LC|n 91071570
996 ‎‡2 ISNI|0000000060683895
996 ‎‡2 BNE|XX1577552
996 ‎‡2 ISNI|0000000060500833
996 ‎‡2 BNE|XX1682343
996 ‎‡2 ISNI|0000000059949297
996 ‎‡2 KRNLK|KAC2019F7782
996 ‎‡2 BNE|XX5104258
996 ‎‡2 BNE|XX899588
996 ‎‡2 NSK|000774771
996 ‎‡2 SUDOC|087262460
996 ‎‡2 ISNI|0000000118623343
996 ‎‡2 ISNI|0000000059206223
996 ‎‡2 LC|n 50018303
996 ‎‡2 BNC|981058517269006706
996 ‎‡2 BNE|XX1100650
996 ‎‡2 SUDOC|031775659
996 ‎‡2 BNE|XX5400008
996 ‎‡2 SUDOC|161984517
996 ‎‡2 ISNI|0000000499229154
996 ‎‡2 LC|n 82142199
996 ‎‡2 BNE|XX885527
996 ‎‡2 BNE|XX1582715
996 ‎‡2 J9U|987007376131705171
996 ‎‡2 SUDOC|137826265
996 ‎‡2 BNC|981058522616806706
996 ‎‡2 BNE|XX1722658
996 ‎‡2 BNE|XX1371947
996 ‎‡2 ISNI|0000000496464888
996 ‎‡2 BNE|XX1316532
996 ‎‡2 SUDOC|055820034
996 ‎‡2 SUDOC|084712422
996 ‎‡2 SUDOC|069930791
996 ‎‡2 SUDOC|104823046
996 ‎‡2 SUDOC|149272197
996 ‎‡2 RERO|A027438393
996 ‎‡2 LC|n 97071984
996 ‎‡2 DNB|1056404329
996 ‎‡2 ISNI|0000000434966604
996 ‎‡2 BNE|XX902066
996 ‎‡2 RERO|A003718817
996 ‎‡2 BNCHL|10000000000000000100613
996 ‎‡2 BNE|XX1395245
996 ‎‡2 BNE|XX1507074
996 ‎‡2 NII|DA12296287
996 ‎‡2 BNCHL|10000000000000000037025
996 ‎‡2 ISNI|0000000131122279
996 ‎‡2 BNE|XX1053315
996 ‎‡2 BNC|981058518916806706
996 ‎‡2 LC|n 93006509
996 ‎‡2 BNE|XX5708496
996 ‎‡2 ISNI|0000000117636900
996 ‎‡2 PTBNP|1609720
996 ‎‡2 ISNI|0000000066366356
996 ‎‡2 DNB|1089538626
996 ‎‡2 ISNI|0000000045615616
996 ‎‡2 BNE|XX975918
996 ‎‡2 BNE|XX956924
996 ‎‡2 BNE|XX4872065
996 ‎‡2 NII|DA18464511
996 ‎‡2 PTBNP|164425
996 ‎‡2 NUKAT|n 2006002676
996 ‎‡2 DNB|1056504277
996 ‎‡2 BNE|XX1118013
996 ‎‡2 ISNI|0000000078801319
996 ‎‡2 ISNI|0000000077303609
996 ‎‡2 ISNI|0000000113441188
996 ‎‡2 BNE|XX1020816
996 ‎‡2 J9U|987007319396405171
996 ‎‡2 SUDOC|162366299
996 ‎‡2 SUDOC|124622755
996 ‎‡2 LC|no2007133547
996 ‎‡2 LC|no2010133130
996 ‎‡2 BNC|981058511517706706
996 ‎‡2 BNE|XX970564
996 ‎‡2 BNE|XX1789331
996 ‎‡2 LNB|LNC10-000199935
996 ‎‡2 ISNI|0000000026977283
996 ‎‡2 LC|no2015136173
996 ‎‡2 ISNI|0000000078259697
996 ‎‡2 BNE|XX949986
996 ‎‡2 ISNI|0000000033782345
996 ‎‡2 LC|n 2016019860
996 ‎‡2 BNE|XX841476
996 ‎‡2 ISNI|0000000058171620
996 ‎‡2 LC|no2022066981
996 ‎‡2 ISNI|0000000118615183
996 ‎‡2 BNE|XX1784489
996 ‎‡2 DNB|133425819
996 ‎‡2 LC|nr2004030444
996 ‎‡2 BNE|XX1150177
996 ‎‡2 BNE|XX1219485
996 ‎‡2 BIBSYS|6039142
996 ‎‡2 DNB|115721813X
996 ‎‡2 NTA|307586189
996 ‎‡2 BNE|XX1649489
996 ‎‡2 BNE|XX1652133
996 ‎‡2 BNF|15926283
996 ‎‡2 BNE|XX5116435
996 ‎‡2 BNE|XX1050911
996 ‎‡2 ARBABN|000038555
996 ‎‡2 LC|no 00098040
996 ‎‡2 LC|no2010011248
996 ‎‡2 NKC|jo20211116959
996 ‎‡2 DNB|1047090295
996 ‎‡2 ISNI|0000000059473452
996 ‎‡2 BNE|XX4606198
996 ‎‡2 SUDOC|068860412
996 ‎‡2 BNC|981058520346406706
996 ‎‡2 BNE|XX984547
996 ‎‡2 BNF|12536252
996 ‎‡2 LC|n 2001028077
996 ‎‡2 BNE|XX1714101
996 ‎‡2 LC|n 95013316
996 ‎‡2 LC|no2010028084
996 ‎‡2 RERO|A003718757
996 ‎‡2 LC|no2002046431
996 ‎‡2 LC|no2009159362
996 ‎‡2 SUDOC|269984712
996 ‎‡2 PTBNP|1187002
996 ‎‡2 BNF|11886480
996 ‎‡2 BNE|XX924569
996 ‎‡2 ISNI|0000000001932249
996 ‎‡2 NKC|pag2009500125
996 ‎‡2 ISNI|0000000104405898
996 ‎‡2 LC|n 81136031
996 ‎‡2 ISNI|0000000439826272
996 ‎‡2 ISNI|0000000114509930
996 ‎‡2 BNE|XX1067186
996 ‎‡2 PLWABN|9810690725305606
996 ‎‡2 BNE|XX4615716
996 ‎‡2 BNE|XX6314989
996 ‎‡2 BNE|XX4753189
996 ‎‡2 RERO|A025462266
996 ‎‡2 SUDOC|276727541
996 ‎‡2 BNE|XX5045296
996 ‎‡2 RERO|A009205265
996 ‎‡2 SUDOC|221617558
996 ‎‡2 BNC|981058515426906706
996 ‎‡2 RERO|A003718809
996 ‎‡2 BNE|XX946536
996 ‎‡2 PTBNP|1155324
996 ‎‡2 SUDOC|05915571X
996 ‎‡2 DNB|1147647518
996 ‎‡2 DNB|1157340784
996 ‎‡2 SUDOC|233196447
996 ‎‡2 DNB|171038649
996 ‎‡2 ISNI|0000000059474412
996 ‎‡2 BNE|XX5856500
996 ‎‡2 BNE|XX876088
996 ‎‡2 ISNI|0000000500998912
996 ‎‡2 LC|no2018004994
996 ‎‡2 LC|no2016049340
996 ‎‡2 ISNI|0000000049325712
996 ‎‡2 DNB|124116590
996 ‎‡2 BNE|XX881635
996 ‎‡2 SUDOC|250416794
996 ‎‡2 DNB|1073841073
996 ‎‡2 ISNI|0000000059446972
996 ‎‡2 ISNI|0000000108762059
996 ‎‡2 LC|nb2009002180
996 ‎‡2 BNE|XX948918
996 ‎‡2 DNB|1053038577
996 ‎‡2 LC|n 2005052416
996 ‎‡2 ISNI|0000000371876213
996 ‎‡2 BNE|XX6025698
996 ‎‡2 DNB|119279649
996 ‎‡2 JPG|500039973
996 ‎‡2 RERO|A020336655
996 ‎‡2 LC|nb2017003274
996 ‎‡2 ISNI|000000005970947X
996 ‎‡2 DNB|1089200242
996 ‎‡2 DNB|143464108
996 ‎‡2 SUDOC|155940767
996 ‎‡2 ISNI|0000000059654501
996 ‎‡2 BNE|XX951441
996 ‎‡2 BNC|981058516211906706
996 ‎‡2 BNC|981058615030006706
996 ‎‡2 SUDOC|174558163
996 ‎‡2 PLWABN|9810699039405606
996 ‎‡2 SUDOC|176882812
996 ‎‡2 ISNI|0000000047646563
996 ‎‡2 ISNI|0000000387171007
996 ‎‡2 BNE|XX5466834
996 ‎‡2 ISNI|0000000393351784
996 ‎‡2 BNE|XX1647354
996 ‎‡2 LC|no2022000431
996 ‎‡2 RERO|A025138711
996 ‎‡2 BNE|XX1278511
996 ‎‡2 DNB|1157194338
996 ‎‡2 BNE|XX4978472
996 ‎‡2 BNE|XX6016705
996 ‎‡2 LC|no2013130038
996 ‎‡2 JPG|500342126
996 ‎‡2 BNE|XX5691318
996 ‎‡2 ISNI|000000037868234X
996 ‎‡2 NTA|182243206
996 ‎‡2 ISNI|0000000081613749
996 ‎‡2 NII|DA10611576
996 ‎‡2 SUDOC|275012131
996 ‎‡2 BNE|XX5533670
996 ‎‡2 J9U|987007275883605171
996 ‎‡2 RERO|A003254328
996 ‎‡2 LC|n 2011082818
996 ‎‡2 ISNI|0000000059478237
996 ‎‡2 BNF|16202271
996 ‎‡2 BNE|XX1043318
996 ‎‡2 BNE|XX820697
996 ‎‡2 SUDOC|111501032
996 ‎‡2 ISNI|0000000041850635
996 ‎‡2 NTA|154092827
996 ‎‡2 PLWABN|9814293093005606
996 ‎‡2 LC|n 85277830
996 ‎‡2 ISNI|0000000370912139
996 ‎‡2 LC|n 86820310
996 ‎‡2 ISNI|0000000111102334
996 ‎‡2 LC|ns2015000620
996 ‎‡2 BNE|XX973855
996 ‎‡2 LC|nr 00025404
996 ‎‡2 RERO|A009109586
996 ‎‡2 LC|ns2015000154
996 ‎‡2 ISNI|000000005964379X
996 ‎‡2 LC|nr2003018939
996 ‎‡2 BNE|XX1626718
996 ‎‡2 BNE|XX5234501
996 ‎‡2 ISNI|0000000106532639
996 ‎‡2 SUDOC|249737043
996 ‎‡2 BNCHL|10000000000000000024476
996 ‎‡2 NKC|jx20051121006
996 ‎‡2 NUKAT|n 2006118189
996 ‎‡2 BNE|XX5542838
996 ‎‡2 BNE|XX1728301
996 ‎‡2 LC|no2018067288
996 ‎‡2 ISNI|0000000072115262
996 ‎‡2 ISNI|0000000060917524
996 ‎‡2 DNB|1244837989
996 ‎‡2 LC|n 87879525
997 ‎‡a 0 0 lived 0 0‏ ‎‡9 1‏