VIAF

Virtual International Authority File

Search

Leader 00000nz a2200037n 45 0
001 WKP|Q30503831 (VIAF cluster) (Authority/Source Record)
003 WKP
005 20241121000124.0
008 241121nneanz||abbn n and d
035 ‎‡a (WKP)Q30503831‏
024 ‎‡a 0000-0002-5887-2966‏ ‎‡2 orcid‏
024 ‎‡a 6603089025‏ ‎‡2 scopus‏
035 ‎‡a (OCoLC)Q30503831‏
100 0 ‎‡a João Aires de Sousa‏ ‎‡c chercheur‏ ‎‡9 fr‏
375 ‎‡a 1‏ ‎‡2 iso5218‏
400 0 ‎‡a João Aires de Sousa‏ ‎‡c researcher‏ ‎‡9 en‏
400 0 ‎‡a João Aires de Sousa‏ ‎‡c wetenschapper‏ ‎‡9 nl‏
400 0 ‎‡a João Aires de Sousa‏ ‎‡c investigador‏ ‎‡9 ast‏
400 0 ‎‡a João Aires de Sousa‏ ‎‡c ricercatore‏ ‎‡9 it‏
400 0 ‎‡a João Aires de Sousa‏ ‎‡c investigador‏ ‎‡9 es‏
670 ‎‡a Author's A big data approach to the ultra-fast prediction of DFT-calculated bond energies‏
670 ‎‡a Author's Assignment of EC numbers to enzymatic reactions with MOLMAP reaction descriptors and random forests.‏
670 ‎‡a Author's Automatic assignment of absolute configuration from 1D NMR data.‏
670 ‎‡a Author's Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions‏
670 ‎‡a Author's Automatic Perception of Chemical Similarities Between Metabolic Pathways‏
670 ‎‡a Author's Chirality Codes and Molecular Structure‏
670 ‎‡a Author's Combining Kohonen neural networks and variable selection by classification trees to cluster road soil samples‏
670 ‎‡a Author's Comparing roadsoils pollution patterns extracted by MOLMAP and classical three-way decomposition methods‏
670 ‎‡a Author's Correction to Sonified Infrared Spectra and Their Interpretation by Blind and Visually Impaired Students‏
670 ‎‡a Author's Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity‏
670 ‎‡a Author's Estimation of Mayr electrophilicity with a quantitative structure-property relationship approach using empirical and DFT descriptors‏
670 ‎‡a Author's Expert system for predicting reaction conditions: the Michael reaction case.‏
670 ‎‡a Author's Exploration of automatic learning to establish relationships between the molecular structure of chiral ionic liquids and the specific optical rotation‏
670 ‎‡a Author's Exploration of quantitative structure–property relationships‏
670 ‎‡a Author's Exploration of quantitative structure–property relationships (QSPR) for the design of new guanidinium ionic liquids‏
670 ‎‡a Author's Genome-Scale Classification of Metabolic Reactions: A Chemoinformatics Approach‏
670 ‎‡a Author's Genome-scale classification of metabolic reactions and assignment of EC numbers with self-organizing maps‏
670 ‎‡a Author's Geographical classification of weathered crude oil samples with unsupervised self-organizing maps and a consensus criterion‏
670 ‎‡a Author's Machine Learning Classification of One-Chiral-Center Organic Molecules According to Optical Rotation‏
670 ‎‡a Author's Machine Learning Estimation of Atom Condensed Fukui Functions.‏
670 ‎‡a Author's Machine learning for the prediction of molecular dipole moments obtained by density functional theory‏
670 ‎‡a Author's Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals.‏
670 ‎‡a Author's Machine learning of chemical reactivity from databases of organic reactions.‏
670 ‎‡a Author's Machine learning to predict the specific optical rotations of chiral fluorinated molecules‏
670 ‎‡a Author's Models for identification of erroneous atom-to-atom mapping of reactions performed by automated algorithms.‏
670 ‎‡a Author's NavMol 3.0: enabling the representation of metabolic reactions by blind users‏
670 ‎‡a Author's New Description of Molecular Chirality and Its Application to the Prediction of the Preferred Enantiomer in Stereoselective Reactions‏
670 ‎‡a Author's Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information‏
670 ‎‡a Author's Physicochemical stereodescriptors of atomic chiral centers.‏
670 ‎‡a Author's Prediction of 1H NMR coupling constants with associative neural networks trained for chemical shifts.‏
670 ‎‡a Author's Prediction of enantiomeric excess in a combinatorial library of catalytic enantioselective reactions‏
670 ‎‡a Author's Prediction of enantiomeric selectivity in chromatography‏
670 ‎‡a Author's Prediction of enantioselectivity using chirality codes and Classification and Regression Trees‏
670 ‎‡a Author's QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties‏
670 ‎‡a Author's Random forest prediction of mutagenicity from empirical physicochemical descriptors‏
670 ‎‡a Author's Sonified Infrared Spectra and Their Interpretation by Blind and Visually Impaired Students‏
670 ‎‡a Author's Structure-Based Classification of Chemical Reactions without Assignment of Reaction Centers‏
670 ‎‡a Author's Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks.‏
670 ‎‡a Author's Synthesis of Pyridazine Derivatives by Suzuki-Miyaura Cross-Coupling Reaction and Evaluation of Their Optical and Electronic Properties through Experimental and Theoretical Studies‏
670 ‎‡a Author's The impact of available experimental data on the prediction of 1H NMR chemical shifts by neural networks‏
909 ‎‡a (orcid) 0000000258872966‏ ‎‡9 1‏
909 ‎‡a (scopus) 6603089025‏ ‎‡9 1‏
919 ‎‡a estimationofmayrelectrophilicitywithaquantitativestructurepropertyrelationshipapproachusingempiricalanddftdescriptors‏ ‎‡A Estimation of Mayr electrophilicity with a quantitative structure-property relationship approach using empirical and DFT descriptors‏ ‎‡9 1‏
919 ‎‡a explorationofautomaticlearningtoestablishrelationshipsbetweenthemolecularstructureofchiralionicliquidsandthespecificopticalrotation‏ ‎‡A Exploration of automatic learning to establish relationships between the molecular structure of chiral ionic liquids and the specific optical rotation‏ ‎‡9 1‏
919 ‎‡a explorationofquantitativestructurepropertyrelationships‏ ‎‡A Exploration of quantitative structure–property relationships‏ ‎‡9 1‏
919 ‎‡a expertsystemforpredictingreactionconditionsthemichaelreactioncase‏ ‎‡A Expert system for predicting reaction conditions: the Michael reaction case.‏ ‎‡9 1‏
919 ‎‡a impactofavailableexperimentaldataonthepredictionof1hnmrchemicalshiftsbyneuralnetworks‏ ‎‡A The impact of available experimental data on the prediction of 1H NMR chemical shifts by neural networks‏ ‎‡9 1‏
919 ‎‡a synthesisofpyridazinederivativesbysuzukimiyauracrosscouplingreactionandevaluationoftheiropticalandelectronicpropertiesthroughexperimentalandtheoreticalstudies‏ ‎‡A Synthesis of Pyridazine Derivatives by Suzuki-Miyaura Cross-Coupling Reaction and Evaluation of Their Optical and Electronic Properties through Experimental and Theoretical Studies‏ ‎‡9 1‏
919 ‎‡a structurebasedpredictionsof1hnmrchemicalshiftsusingfeedforwardneuralnetworks‏ ‎‡A Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks.‏ ‎‡9 1‏
919 ‎‡a structurebasedclassificationofchemicalreactionswithoutassignmentofreactioncenters‏ ‎‡A Structure-Based Classification of Chemical Reactions without Assignment of Reaction Centers‏ ‎‡9 1‏
919 ‎‡a sonifiedinfraredspectraandtheirinterpretationbyblindandvisuallyimpairedstudents‏ ‎‡A Sonified Infrared Spectra and Their Interpretation by Blind and Visually Impaired Students‏ ‎‡9 1‏
919 ‎‡a randomforestpredictionofmutagenicityfromempiricalphysicochemicaldescriptors‏ ‎‡A Random forest prediction of mutagenicity from empirical physicochemical descriptors‏ ‎‡9 1‏
919 ‎‡a qsaranalysisofphenolicantioxidantsusingmolmapdescriptorsoflocalproperties‏ ‎‡A QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties‏ ‎‡9 1‏
919 ‎‡a predictionofenantioselectivityusingchiralitycodesandclassificationandregressiontrees‏ ‎‡A Prediction of enantioselectivity using chirality codes and Classification and Regression Trees‏ ‎‡9 1‏
919 ‎‡a predictionofenantiomericselectivityinchromatography‏ ‎‡A Prediction of enantiomeric selectivity in chromatography‏ ‎‡9 1‏
919 ‎‡a predictionofenantiomericexcessinacombinatoriallibraryofcatalyticenantioselectivereactions‏ ‎‡A Prediction of enantiomeric excess in a combinatorial library of catalytic enantioselective reactions‏ ‎‡9 1‏
919 ‎‡a predictionof1hnmrcouplingconstantswithassociativeneuralnetworkstrainedforchemicalshifts‏ ‎‡A Prediction of 1H NMR coupling constants with associative neural networks trained for chemical shifts.‏ ‎‡9 1‏
919 ‎‡a physicochemicalstereodescriptorsofatomicchiralcenters‏ ‎‡A Physicochemical stereodescriptors of atomic chiral centers.‏ ‎‡9 1‏
919 ‎‡a onlinechemicalmodelingenvironmentochemwebplatformfordatastoragemodeldevelopmentandpublishingofchemicalinformation‏ ‎‡A Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information‏ ‎‡9 1‏
919 ‎‡a newdescriptionofmolecularchiralityanditsapplicationtothepredictionofthepreferredenantiomerinstereoselectivereactions‏ ‎‡A New Description of Molecular Chirality and Its Application to the Prediction of the Preferred Enantiomer in Stereoselective Reactions‏ ‎‡9 1‏
919 ‎‡a navmol30enablingtherepresentationofmetabolicreactionsbyblindusers‏ ‎‡A NavMol 3.0: enabling the representation of metabolic reactions by blind users‏ ‎‡9 1‏
919 ‎‡a modelsforidentificationoferroneousatomtoatommappingofreactionsperformedbyautomatedalgorithms‏ ‎‡A Models for identification of erroneous atom-to-atom mapping of reactions performed by automated algorithms.‏ ‎‡9 1‏
919 ‎‡a machinelearningtopredictthespecificopticalrotationsofchiralfluorinatedmolecules‏ ‎‡A Machine learning to predict the specific optical rotations of chiral fluorinated molecules‏ ‎‡9 1‏
919 ‎‡a machinelearningofchemicalreactivityfromdatabasesoforganicreactions‏ ‎‡A Machine learning of chemical reactivity from databases of organic reactions.‏ ‎‡9 1‏
919 ‎‡a machinelearningmethodstopredictdensityfunctionaltheoryb3lypenergiesofhomoandlumoorbitals‏ ‎‡A Machine Learning Methods to Predict Density Functional Theory B3LYP Energies of HOMO and LUMO Orbitals.‏ ‎‡9 1‏
919 ‎‡a machinelearningforthepredictionofmoleculardipolemomentsobtainedbydensityfunctionaltheory‏ ‎‡A Machine learning for the prediction of molecular dipole moments obtained by density functional theory‏ ‎‡9 1‏
919 ‎‡a machinelearningestimationofatomcondensedfukuifunctions‏ ‎‡A Machine Learning Estimation of Atom Condensed Fukui Functions.‏ ‎‡9 1‏
919 ‎‡a machinelearningclassificationof1chiralcenterorganicmoleculesaccordingtoopticalrotation‏ ‎‡A Machine Learning Classification of One-Chiral-Center Organic Molecules According to Optical Rotation‏ ‎‡9 1‏
919 ‎‡a geographicalclassificationofweatheredcrudeoilsampleswithunsupervisedselforganizingmapsandaconsensuscriterion‏ ‎‡A Geographical classification of weathered crude oil samples with unsupervised self-organizing maps and a consensus criterion‏ ‎‡9 1‏
919 ‎‡a genomescaleclassificationofmetabolicreactionsandassignmentofecnumberswithselforganizingmaps‏ ‎‡A Genome-scale classification of metabolic reactions and assignment of EC numbers with self-organizing maps‏ ‎‡9 1‏
919 ‎‡a genomescaleclassificationofmetabolicreactionsachemoinformaticsapproach‏ ‎‡A Genome-Scale Classification of Metabolic Reactions: A Chemoinformatics Approach‏ ‎‡9 1‏
919 ‎‡a bigdataapproachtotheultrafastpredictionofdftcalculatedbondenergies‏ ‎‡A A big data approach to the ultra-fast prediction of DFT-calculated bond energies‏ ‎‡9 1‏
919 ‎‡a assignmentofecnumberstoenzymaticreactionswithmolmapreactiondescriptorsandrandomforests‏ ‎‡A Assignment of EC numbers to enzymatic reactions with MOLMAP reaction descriptors and random forests.‏ ‎‡9 1‏
919 ‎‡a explorationofquantitativestructurepropertyrelationshipsqsprforthedesignofnewguanidiniumionicliquids‏ ‎‡A Exploration of quantitative structure–property relationships (QSPR) for the design of new guanidinium ionic liquids‏ ‎‡9 1‏
919 ‎‡a automaticassignmentofabsoluteconfigurationfrom1dnmrdata‏ ‎‡A Automatic assignment of absolute configuration from 1D NMR data.‏ ‎‡9 1‏
919 ‎‡a automaticnmrbasedidentificationofchemicalreactiontypesinmixturesofcooccurringreactions‏ ‎‡A Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions‏ ‎‡9 1‏
919 ‎‡a automaticperceptionofchemicalsimilaritiesbetweenmetabolicpathways‏ ‎‡A Automatic Perception of Chemical Similarities Between Metabolic Pathways‏ ‎‡9 1‏
919 ‎‡a chiralitycodesandmolecularstructure‏ ‎‡A Chirality Codes and Molecular Structure‏ ‎‡9 1‏
919 ‎‡a combiningkohonenneuralnetworksandvariableselectionbyclassificationtreestoclusterroadsoilsamples‏ ‎‡A Combining Kohonen neural networks and variable selection by classification trees to cluster road soil samples‏ ‎‡9 1‏
919 ‎‡a comparingroadsoilspollutionpatternsextractedbymolmapandclassical3waydecompositionmethods‏ ‎‡A Comparing roadsoils pollution patterns extracted by MOLMAP and classical three-way decomposition methods‏ ‎‡9 1‏
919 ‎‡a correctiontosonifiedinfraredspectraandtheirinterpretationbyblindandvisuallyimpairedstudents‏ ‎‡A Correction to Sonified Infrared Spectra and Their Interpretation by Blind and Visually Impaired Students‏ ‎‡9 1‏
919 ‎‡a designsynthesisandbiologicalevaluationofnovelisoniazidderivativeswithpotentantitubercularactivity‏ ‎‡A Design, synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity‏ ‎‡9 1‏
946 ‎‡a b‏ ‎‡9 1‏
996 ‎‡2 ISNI|000000006918438X
996 ‎‡2 SUDOC|158600312
996 ‎‡2 DNB|170699862
996 ‎‡2 BNF|18044095
996 ‎‡2 PTBNP|276083
996 ‎‡2 LC|no2019023625
996 ‎‡2 BNF|12716669
996 ‎‡2 SUDOC|188045260
996 ‎‡2 LC|n 84231073
996 ‎‡2 PTBNP|237254
996 ‎‡2 ISNI|0000000046508388
996 ‎‡2 PTBNP|1308667
996 ‎‡2 PTBNP|1675175
996 ‎‡2 BNF|16510466
996 ‎‡2 LC|no2007061689
996 ‎‡2 ISNI|0000000068490668
996 ‎‡2 PTBNP|1770223
996 ‎‡2 LC|no2010112720
996 ‎‡2 ISNI|0000000031779468
996 ‎‡2 BNF|15648229
996 ‎‡2 DNB|1305047036
996 ‎‡2 PTBNP|200161
996 ‎‡2 ISNI|0000000026827533
996 ‎‡2 PTBNP|1224320
996 ‎‡2 ISNI|0000000068989696
996 ‎‡2 J9U|987007276069705171
996 ‎‡2 PTBNP|1898591
996 ‎‡2 BLBNB|000449881
996 ‎‡2 NDL|00457206
996 ‎‡2 PTBNP|78224
996 ‎‡2 ISNI|0000000080884141
996 ‎‡2 LC|no2001047612
996 ‎‡2 PTBNP|1585745
996 ‎‡2 BLBNB|000564917
996 ‎‡2 LC|n 95922947
996 ‎‡2 PTBNP|125004
996 ‎‡2 LC|no2010132131
996 ‎‡2 PTBNP|1584746
996 ‎‡2 PTBNP|1040616
996 ‎‡2 CAOONL|ncf11947216
996 ‎‡2 ISNI|0000000032028500
996 ‎‡2 SUDOC|069931682
996 ‎‡2 ISNI|0000000373420455
996 ‎‡2 ISNI|0000000067997782
996 ‎‡2 BNE|XX1574737
996 ‎‡2 LC|n 89242080
996 ‎‡2 ISNI|0000000069317082
996 ‎‡2 SUDOC|120862298
996 ‎‡2 PTBNP|1272165
996 ‎‡2 PTBNP|180218
996 ‎‡2 PTBNP|510673
996 ‎‡2 PTBNP|1435247
996 ‎‡2 PTBNP|1625654
996 ‎‡2 ISNI|0000000069084477
996 ‎‡2 ISNI|0000000052893470
996 ‎‡2 PTBNP|1186174
996 ‎‡2 PTBNP|1353045
996 ‎‡2 ISNI|0000000116916046
996 ‎‡2 ISNI|0000000025388794
996 ‎‡2 BLBNB|000360258
996 ‎‡2 PTBNP|1089370
996 ‎‡2 PTBNP|1044406
996 ‎‡2 ISNI|0000000070412669
996 ‎‡2 PTBNP|272843
996 ‎‡2 SUDOC|256337225
996 ‎‡2 DNB|1053089228
996 ‎‡2 PTBNP|1218963
996 ‎‡2 BLBNB|001417626
996 ‎‡2 NKC|jo2016915726
996 ‎‡2 BLBNB|000622088
996 ‎‡2 LC|n 88013595
996 ‎‡2 SUDOC|162010540
996 ‎‡2 PTBNP|1377747
996 ‎‡2 W2Z|90230924
996 ‎‡2 PTBNP|160879
996 ‎‡2 PLWABN|9811552716505606
996 ‎‡2 PTBNP|263776
996 ‎‡2 NTA|440204925
996 ‎‡2 SUDOC|150697953
996 ‎‡2 PTBNP|116323
996 ‎‡2 ISNI|0000000035056814
996 ‎‡2 PTBNP|197420
996 ‎‡2 BLBNB|001038807
996 ‎‡2 PTBNP|1394395
996 ‎‡2 NTA|158182944
996 ‎‡2 ISNI|0000000070100745
996 ‎‡2 DNB|1056331178
996 ‎‡2 PTBNP|1642302
996 ‎‡2 ISNI|0000000069717203
996 ‎‡2 PTBNP|216914
996 ‎‡2 BNE|XX1424620
996 ‎‡2 LC|nr 90010706
996 ‎‡2 PTBNP|1409724
996 ‎‡2 PTBNP|215244
996 ‎‡2 LC|n 84153246
996 ‎‡2 BNCHL|10000000000000000197997
996 ‎‡2 BLBNB|000601622
996 ‎‡2 ISNI|0000000367816429
996 ‎‡2 BNF|13899941
996 ‎‡2 ISNI|0000000069408793
996 ‎‡2 CAOONL|ncf11766816
996 ‎‡2 ISNI|0000000067672291
996 ‎‡2 PLWABN|9810624324305606
996 ‎‡2 BNF|11986473
996 ‎‡2 PTBNP|712301
996 ‎‡2 NUKAT|n 2007139514
996 ‎‡2 BLBNB|000399184
996 ‎‡2 ISNI|0000000068784199
996 ‎‡2 ISNI|0000000068503035
996 ‎‡2 PTBNP|228276
996 ‎‡2 SUDOC|184238528
996 ‎‡2 PTBNP|1567809
996 ‎‡2 BLBNB|000512636
996 ‎‡2 ISNI|0000000078348040
996 ‎‡2 BLBNB|000360030
996 ‎‡2 ISNI|0000000069810336
996 ‎‡2 BLBNB|000360034
996 ‎‡2 ISNI|0000000070927005
996 ‎‡2 BLBNB|000360036
996 ‎‡2 LC|n 79122078
996 ‎‡2 PTBNP|1919743
996 ‎‡2 LC|n 97905298
996 ‎‡2 LC|n 96085191
996 ‎‡2 PTBNP|251374
996 ‎‡2 PTBNP|1721846
996 ‎‡2 PTBNP|151623
996 ‎‡2 DNB|105679366X
996 ‎‡2 SUDOC|127643974
996 ‎‡2 PTBNP|1536988
996 ‎‡2 LC|no 91022277
996 ‎‡2 PTBNP|38250
996 ‎‡2 ISNI|000000006683798X
996 ‎‡2 DNB|1128247526
996 ‎‡2 PTBNP|1747306
996 ‎‡2 ISNI|0000000065419612
996 ‎‡2 PTBNP|1196038
996 ‎‡2 SUDOC|06782515X
996 ‎‡2 LC|n 88113407
996 ‎‡2 SELIBR|290132
996 ‎‡2 ISNI|0000000069905992
996 ‎‡2 BNE|XX1413551
996 ‎‡2 PTBNP|1757417
996 ‎‡2 ISNI|0000000068305514
996 ‎‡2 PTBNP|1213258
996 ‎‡2 PTBNP|64779
996 ‎‡2 LC|no2016081490
996 ‎‡2 SUDOC|148070140
996 ‎‡2 ISNI|0000000071001271
996 ‎‡2 DNB|132102374X
996 ‎‡2 SUDOC|257477780
996 ‎‡2 LIH|LNB:HWG;=BC
996 ‎‡2 ISNI|0000000070730296
996 ‎‡2 ISNI|0000000035743809
996 ‎‡2 PTBNP|136775
996 ‎‡2 PTBNP|1799939
996 ‎‡2 ISNI|0000000067993159
996 ‎‡2 ISNI|0000000084774687
996 ‎‡2 PTBNP|1719636
996 ‎‡2 PTBNP|186167
996 ‎‡2 ISNI|0000000428245683
996 ‎‡2 ISNI|0000000078834591
996 ‎‡2 PTBNP|890255
996 ‎‡2 ISNI|000000006918649X
996 ‎‡2 NTA|073364193
996 ‎‡2 SUDOC|027926583
996 ‎‡2 NKC|mzk2003182603
996 ‎‡2 ISNI|0000000035040433
996 ‎‡2 JPG|500355247
996 ‎‡2 LC|n 2021054295
996 ‎‡2 SUDOC|160614015
996 ‎‡2 PLWABN|9812197442505606
996 ‎‡2 PTBNP|813544
996 ‎‡2 ISNI|0000000038405610
996 ‎‡2 LC|nr 93046609
996 ‎‡2 DNB|118972170
996 ‎‡2 BLBNB|000202958
996 ‎‡2 ISNI|0000000070717649
996 ‎‡2 LC|n 2011043255
996 ‎‡2 CAOONL|ncf11855611
996 ‎‡2 ISNI|0000000069594063
996 ‎‡2 LC|n 94066834
996 ‎‡2 BLBNB|000279028
996 ‎‡2 LC|nb2006004817
996 ‎‡2 BLBNB|000361204
996 ‎‡2 ISNI|0000000059792453
996 ‎‡2 PTBNP|116271
996 ‎‡2 PTBNP|116272
996 ‎‡2 ISNI|0000000070536629
996 ‎‡2 ISNI|0000000068282199
996 ‎‡2 PTBNP|116277
996 ‎‡2 PTBNP|1781515
996 ‎‡2 PTBNP|116370
996 ‎‡2 PTBNP|120651
996 ‎‡2 LC|n 79077966
996 ‎‡2 ISNI|0000000101905408
996 ‎‡2 CAOONL|ncf10150979
996 ‎‡2 NII|DA07719392
996 ‎‡2 PTBNP|707729
996 ‎‡2 ISNI|0000000111206299
996 ‎‡2 ISNI|0000000119304934
996 ‎‡2 SUDOC|252555457
996 ‎‡2 ISNI|0000000067872007
996 ‎‡2 PTBNP|1799024
996 ‎‡2 DNB|1033028010
996 ‎‡2 NSK|000053657
996 ‎‡2 ISNI|0000000068921165
996 ‎‡2 PTBNP|158955
996 ‎‡2 LC|no2002003650
996 ‎‡2 ISNI|0000000447451917
996 ‎‡2 PTBNP|1865027
996 ‎‡2 ISNI|0000000501581553
996 ‎‡2 LC|n 2008216463
996 ‎‡2 ISNI|0000000067224448
996 ‎‡2 PTBNP|28740
996 ‎‡2 DNB|111747822X
996 ‎‡2 BNF|11887620
996 ‎‡2 LC|n 2020251299
996 ‎‡2 BNF|12135673
996 ‎‡2 N6I|vtls001383777
996 ‎‡2 ISNI|0000000120982820
996 ‎‡2 NTA|418229082
996 ‎‡2 PTBNP|1487110
996 ‎‡2 PTBNP|113883
996 ‎‡2 ISNI|0000000068402621
996 ‎‡2 NSK|000588641
996 ‎‡2 ISNI|0000000068608996
996 ‎‡2 BLBNB|000360071
996 ‎‡2 NTA|074104365
996 ‎‡2 LC|n 85080405
996 ‎‡2 DNB|1012207633
996 ‎‡2 PTBNP|752930
996 ‎‡2 NTA|070726949
996 ‎‡2 BNF|16913659
996 ‎‡2 PTBNP|1652910
996 ‎‡2 PTBNP|144429
996 ‎‡2 ISNI|0000000070318605
996 ‎‡2 BLBNB|001585304
996 ‎‡2 LC|nb2022003571
996 ‎‡2 PTBNP|1587043
996 ‎‡2 BLBNB|000593813
996 ‎‡2 ISNI|0000000081304380
996 ‎‡2 RERO|A003850535
996 ‎‡2 BNF|17811294
996 ‎‡2 PTBNP|277328
996 ‎‡2 LC|no2005010458
996 ‎‡2 BLBNB|000184567
996 ‎‡2 NII|DA11254929
996 ‎‡2 ISNI|0000000068812575
996 ‎‡2 PTBNP|1661435
996 ‎‡2 NUKAT|n 2014183556
997 ‎‡a 0 0 lived 0 0‏ ‎‡9 1‏