VIAF

Virtual International Authority File

Search

Leader 00000nz a2200037n 45 0
001 WKP|Q43282381 (VIAF cluster) (Authority/Source Record)
003 WKP
005 20241120235931.0
008 241120nneanz||abbn n and d
035 ‎‡a (WKP)Q43282381‏
024 ‎‡a 0000-0002-3782-0550‏ ‎‡2 orcid‏
035 ‎‡a (OCoLC)Q43282381‏
100 0 ‎‡a Andrew L Harris‏ ‎‡9 es‏ ‎‡9 ast‏
375 ‎‡a 1‏ ‎‡2 iso5218‏
400 0 ‎‡a অ্যান্ড্রু এল হ্যারিস‏ ‎‡c গবেষক‏ ‎‡9 bn‏
400 0 ‎‡a Andrew L Harris‏ ‎‡c researcher‏ ‎‡9 en‏
400 0 ‎‡a Andrew L Harris‏ ‎‡c wetenschapper‏ ‎‡9 nl‏
670 ‎‡a Author's 2-aminoethoxydiphenyl borate directly inhibits channels composed of connexin26 and/or connexin32.‏
670 ‎‡a Author's Altered permeability and modulatory character of connexin channels during mammary gland development‏
670 ‎‡a Author's An electrostatic mechanism for Ca(2+)-mediated regulation of gap junction channels‏
670 ‎‡a Author's Biochemical requirements for inhibition of Connexin26-containing channels by natural and synthetic taurine analogs‏
670 ‎‡a Author's Ca2+-dependent inactivation of CaV1.2 channels prevents Gd3+ block: does Ca2+ block the pore of inactivated channels?‏
670 ‎‡a Author's Channel-forming activity of immunoaffinity-purified connexin32 in single phospholipid membranes‏
670 ‎‡a Author's Comparison of pH and calcium dependence of gap junctional conductance‏
670 ‎‡a Author's Computational Studies of Molecular Permeation through Connexin26 Channels‏
670 ‎‡a Author's Connexin channels and phospholipids: association and modulation‏
670 ‎‡a Author's Connexin specificity of second messenger permeation: real numbers at last.‏
670 ‎‡a Author's Control of intercellular communication by voltage dependence of gap junctional conductance.‏
670 ‎‡a Author's Control of intercellular communication by way of gap junctions‏
670 ‎‡a Author's Direct high affinity modulation of connexin channel activity by cyclic nucleotides‏
670 ‎‡a Author's Divalent regulation and intersubunit interactions of human connexin26 (Cx26) hemichannels.‏
670 ‎‡a Author's DNA repair in DNA-polymerase-deficient mutants of Escherichia coli‏
670 ‎‡a Author's DNA repair in Escherichia coli mutants deficient in DNA polymerases I, II and-or 3.‏
670 ‎‡a Author's DNA Repair in Escherichia coli Mutants Deficient in DNA Polymerases I, II, and/or III‏
670 ‎‡a Author's Electrical coupling and its channels‏
670 ‎‡a Author's Endothelial cAMP deactivates ischemia-reperfusion-induced microvascular hyperpermeability via Rap1-mediated mechanisms.‏
670 ‎‡a Author's Equilibrium properties of a voltage-dependent junctional conductance.‏
670 ‎‡a Author's Exploring hemichannel permeability in vitro‏
670 ‎‡a Author's Gap junction channel structure in the early 21st century: facts and fantasies‏
670 ‎‡a Author's Gap junctional conductance is a simple and sensitive function of intracellular pH‏
670 ‎‡a Author's Gap junctions in early amphibian embryos‏
670 ‎‡a Author's Gap junctions modulate glioma invasion by direct transfer of microRNA‏
670 ‎‡a Author's Gap junctions propagate opposite effects in normal and tumor testicular cells in response to cisplatin.‏
670 ‎‡a Author's Gating of gap junction channels‏
670 ‎‡a Author's Gating on the outside.‏
670 ‎‡a Author's Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells.‏
670 ‎‡a Author's Glutathione release through connexin hemichannels: Implications for chemical modification of pores permeable to large molecules.‏
670 ‎‡a Author's Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates‏
670 ‎‡a Author's Horizontal 'solvent-free' lipid bimolecular membranes with two-sided access can be formed and facilitate ion channel reconstitution‏
670 ‎‡a Author's Human cell responses to ionizing radiation are differentially affected by the expressed connexins.‏
670 ‎‡a Author's Insights on the mechanisms of Ca(2+) regulation of connexin26 hemichannels revealed by human pathogenic mutations (D50N/Y).‏
670 ‎‡a Author's Intercellular communication amplifies stressful effects in high-charge, high-energy (HZE) particle-irradiated human cells.‏
670 ‎‡a Author's Intramolecular signaling in a cardiac connexin: Role of cytoplasmic domain dimerization.‏
670 ‎‡a Author's Ion channels in single bilayers induced by rat connexin32‏
670 ‎‡a Author's Isoelectric points and post-translational modifications of connexin26 and connexin32.‏
670 ‎‡a Author's Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules‏
670 ‎‡a Author's Kinetic properties of a voltage-dependent junctional conductance‏
670 ‎‡a Author's Lipid rafts prepared by different methods contain different connexin channels, but gap junctions are not lipid rafts‏
670 ‎‡a Author's Mechanism for modulation of gating of connexin26-containing channels by taurine‏
670 ‎‡a Author's Mechanism of gating by calcium in connexin hemichannels‏
670 ‎‡a Author's Molecular dynamics simulations of the Cx26 hemichannel: insights into voltage-dependent loop-gating‏
670 ‎‡a Author's Motifs in the permeation pathway of connexin channels mediate voltage and Ca (2+) sensing‏
670 ‎‡a Author's Nature of Cx30-containing channels in the adult mouse mammary gland‏
670 ‎‡a Author's Neutral, acidic, and basic derivatives of anthranilamide that confer different formal charge to reducing oligosaccharides‏
670 ‎‡a Author's Non-junctional Cx32 mediates anti-apoptotic and pro-tumor effects via epidermal growth factor receptor in human cervical cancer cells.‏
670 ‎‡a Author's Open pore block of connexin26 and connexin32 hemichannels by neutral, acidic and basic glycoconjugates‏
670 ‎‡a Author's Post-translational modifications of connexin26 revealed by mass spectrometry‏
670 ‎‡a Author's Regulation of connexin channels by pH. Direct action of the protonated form of taurine and other aminosulfonates‏
670 ‎‡a Author's Reversible pore block of connexin channels by cyclodextrins‏
670 ‎‡a Author's Selectivity of connexin-specific gap junctions does not correlate with channel conductance.‏
670 ‎‡a Author's Substituted benzyl acetates: a new class of compounds that reduce gap junctional conductance by cytoplasmic acidification.‏
670 ‎‡a Author's The connexin26 human mutation N14K disrupts cytosolic intersubunit interactions and promotes channel opening‏
670 ‎‡a Author's Tramadol and flurbiprofen depress the cytotoxicity of cisplatin via their effects on gap junctions‏
670 ‎‡a Author's Transport-specific isolation of large channels reconstituted into lipid vesicles.‏
670 ‎‡a Author's Voltage Dependence of Junctional Conductance in Early Amphibian Embryos‏
670 ‎‡a Author's Voltage-sensing and substate rectification: moving parts of connexin channels‏
909 ‎‡a (orcid) 0000000237820550‏ ‎‡9 1‏
919 ‎‡a ionchannelsinsinglebilayersinducedbyratconnexin32‏ ‎‡A Ion channels in single bilayers induced by rat connexin32‏ ‎‡9 1‏
919 ‎‡a intramolecularsignalinginacardiacconnexinroleofcytoplasmicdomaindimerization‏ ‎‡A Intramolecular signaling in a cardiac connexin: Role of cytoplasmic domain dimerization.‏ ‎‡9 1‏
919 ‎‡a intercellularcommunicationamplifiesstressfuleffectsinhighchargehighenergyhzeparticleirradiatedhumancells‏ ‎‡A Intercellular communication amplifies stressful effects in high-charge, high-energy (HZE) particle-irradiated human cells.‏ ‎‡9 1‏
919 ‎‡a insightsonthemechanismsofca2+regulationofconnexin26hemichannelsrevealedbyhumanpathogenicmutationsd50ny‏ ‎‡A Insights on the mechanisms of Ca(2+) regulation of connexin26 hemichannels revealed by human pathogenic mutations (D50N/Y).‏ ‎‡9 1‏
919 ‎‡a humancellresponsestoionizingradiationaredifferentiallyaffectedbytheexpressedconnexins‏ ‎‡A Human cell responses to ionizing radiation are differentially affected by the expressed connexins.‏ ‎‡9 1‏
919 ‎‡a horizontalsolventfreelipidbimolecularmembraneswith2sidedaccesscanbeformedandfacilitateionchannelreconstitution‏ ‎‡A Horizontal 'solvent-free' lipid bimolecular membranes with two-sided access can be formed and facilitate ion channel reconstitution‏ ‎‡9 1‏
919 ‎‡a directhighaffinitymodulationofconnexinchannelactivitybycyclicnucleotides‏ ‎‡A Direct high affinity modulation of connexin channel activity by cyclic nucleotides‏ ‎‡9 1‏
919 ‎‡a heteromericbutnothomomericconnexinchannelsareselectivelypermeabletoinositolphosphates‏ ‎‡A Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates‏ ‎‡9 1‏
919 ‎‡a glutathionereleasethroughconnexinhemichannelsimplicationsforchemicalmodificationofporespermeabletolargemolecules‏ ‎‡A Glutathione release through connexin hemichannels: Implications for chemical modification of pores permeable to large molecules.‏ ‎‡9 1‏
919 ‎‡a genomicinstabilityinducedindistantprogenyofbystandercellsdependsontheconnexinsexpressedintheirradiatedcells‏ ‎‡A Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells.‏ ‎‡9 1‏
919 ‎‡a divalentregulationandintersubunitinteractionsofhumanconnexin26cx26hemichannels‏ ‎‡A Divalent regulation and intersubunit interactions of human connexin26 (Cx26) hemichannels.‏ ‎‡9 1‏
919 ‎‡a gatingontheoutside‏ ‎‡A Gating on the outside.‏ ‎‡9 1‏
919 ‎‡a gatingofgapjunctionchannels‏ ‎‡A Gating of gap junction channels‏ ‎‡9 1‏
919 ‎‡a gapjunctionspropagateoppositeeffectsinnormalandtumortesticularcellsinresponsetocisplatin‏ ‎‡A Gap junctions propagate opposite effects in normal and tumor testicular cells in response to cisplatin.‏ ‎‡9 1‏
919 ‎‡a dnarepairindnapolymerasedeficientmutantsofescherichiacoli‏ ‎‡A DNA repair in DNA-polymerase-deficient mutants of Escherichia coli‏ ‎‡9 1‏
919 ‎‡a gapjunctionsmodulategliomainvasionbydirecttransferofmicrorna‏ ‎‡A Gap junctions modulate glioma invasion by direct transfer of microRNA‏ ‎‡9 1‏
919 ‎‡a gapjunctionsinearlyamphibianembryos‏ ‎‡A Gap junctions in early amphibian embryos‏ ‎‡9 1‏
919 ‎‡a dnarepairinescherichiacolimutantsdeficientindnapolymerases12andor3‏ ‎‡A DNA repair in Escherichia coli mutants deficient in DNA polymerases I, II and-or 3.‏ ‎‡9 2‏
919 ‎‡a electricalcouplinganditschannels‏ ‎‡A Electrical coupling and its channels‏ ‎‡9 1‏
919 ‎‡a endothelialcampdeactivatesischemiareperfusioninducedmicrovascularhyperpermeabilityviarap1mediatedmechanisms‏ ‎‡A Endothelial cAMP deactivates ischemia-reperfusion-induced microvascular hyperpermeability via Rap1-mediated mechanisms.‏ ‎‡9 1‏
919 ‎‡a equilibriumpropertiesofavoltagedependentjunctionalconductance‏ ‎‡A Equilibrium properties of a voltage-dependent junctional conductance.‏ ‎‡9 1‏
919 ‎‡a exploringhemichannelpermeabilityinvitro‏ ‎‡A Exploring hemichannel permeability in vitro‏ ‎‡9 1‏
919 ‎‡a gapjunctionchannelstructureintheearly21stcenturyfactsandfantasies‏ ‎‡A Gap junction channel structure in the early 21st century: facts and fantasies‏ ‎‡9 1‏
919 ‎‡a gapjunctionalconductanceisasimpleandsensitivefunctionofintracellularph‏ ‎‡A Gap junctional conductance is a simple and sensitive function of intracellular pH‏ ‎‡9 1‏
919 ‎‡a 2aminoethoxydiphenylboratedirectlyinhibitschannelscomposedofconnexin26andorconnexin32‏ ‎‡A 2-aminoethoxydiphenyl borate directly inhibits channels composed of connexin26 and/or connexin32.‏ ‎‡9 1‏
919 ‎‡a alteredpermeabilityandmodulatorycharacterofconnexinchannelsduringmammaryglanddevelopment‏ ‎‡A Altered permeability and modulatory character of connexin channels during mammary gland development‏ ‎‡9 1‏
919 ‎‡a electrostaticmechanismforca2+mediatedregulationofgapjunctionchannels‏ ‎‡A An electrostatic mechanism for Ca(2+)-mediated regulation of gap junction channels‏ ‎‡9 1‏
919 ‎‡a biochemicalrequirementsforinhibitionofconnexin26containingchannelsbynaturalandsynthetictaurineanalogs‏ ‎‡A Biochemical requirements for inhibition of Connexin26-containing channels by natural and synthetic taurine analogs‏ ‎‡9 1‏
919 ‎‡a ca2+dependentinactivationofcav12channelspreventsgd3+blockdoesca2+blocktheporeofinactivatedchannels‏ ‎‡A Ca2+-dependent inactivation of CaV1.2 channels prevents Gd3+ block: does Ca2+ block the pore of inactivated channels?‏ ‎‡9 1‏
919 ‎‡a channelformingactivityofimmunoaffinitypurifiedconnexin32insinglephospholipidmembranes‏ ‎‡A Channel-forming activity of immunoaffinity-purified connexin32 in single phospholipid membranes‏ ‎‡9 1‏
919 ‎‡a comparisonofphandcalciumdependenceofgapjunctionalconductance‏ ‎‡A Comparison of pH and calcium dependence of gap junctional conductance‏ ‎‡9 1‏
919 ‎‡a computationalstudiesofmolecularpermeationthroughconnexin26channels‏ ‎‡A Computational Studies of Molecular Permeation through Connexin26 Channels‏ ‎‡9 1‏
919 ‎‡a connexinchannelsandphospholipidsassociationandmodulation‏ ‎‡A Connexin channels and phospholipids: association and modulation‏ ‎‡9 1‏
919 ‎‡a connexinspecificityof2messengerpermeationrealnumbersatlast‏ ‎‡A Connexin specificity of second messenger permeation: real numbers at last.‏ ‎‡9 1‏
919 ‎‡a controlofintercellularcommunicationbyvoltagedependenceofgapjunctionalconductance‏ ‎‡A Control of intercellular communication by voltage dependence of gap junctional conductance.‏ ‎‡9 1‏
919 ‎‡a controlofintercellularcommunicationbywayofgapjunctions‏ ‎‡A Control of intercellular communication by way of gap junctions‏ ‎‡9 1‏
919 ‎‡a voltagesensingandsubstaterectificationmovingpartsofconnexinchannels‏ ‎‡A Voltage-sensing and substate rectification: moving parts of connexin channels‏ ‎‡9 1‏
919 ‎‡a voltagedependenceofjunctionalconductanceinearlyamphibianembryos‏ ‎‡A Voltage Dependence of Junctional Conductance in Early Amphibian Embryos‏ ‎‡9 1‏
919 ‎‡a transportspecificisolationoflargechannelsreconstitutedintolipidvesicles‏ ‎‡A Transport-specific isolation of large channels reconstituted into lipid vesicles.‏ ‎‡9 1‏
919 ‎‡a tramadolandflurbiprofendepressthecytotoxicityofcisplatinviatheireffectsongapjunctions‏ ‎‡A Tramadol and flurbiprofen depress the cytotoxicity of cisplatin via their effects on gap junctions‏ ‎‡9 1‏
919 ‎‡a connexin26humanmutationn14kdisruptscytosolicintersubunitinteractionsandpromoteschannelopening‏ ‎‡A The connexin26 human mutation N14K disrupts cytosolic intersubunit interactions and promotes channel opening‏ ‎‡9 1‏
919 ‎‡a substitutedbenzylacetatesanewclassofcompoundsthatreducegapjunctionalconductancebycytoplasmicacidification‏ ‎‡A Substituted benzyl acetates: a new class of compounds that reduce gap junctional conductance by cytoplasmic acidification.‏ ‎‡9 1‏
919 ‎‡a selectivityofconnexinspecificgapjunctionsdoesnotcorrelatewithchannelconductance‏ ‎‡A Selectivity of connexin-specific gap junctions does not correlate with channel conductance.‏ ‎‡9 1‏
919 ‎‡a reversibleporeblockofconnexinchannelsbycyclodextrins‏ ‎‡A Reversible pore block of connexin channels by cyclodextrins‏ ‎‡9 1‏
919 ‎‡a regulationofconnexinchannelsbyphdirectactionoftheprotonatedformoftaurineandotheraminosulfonates‏ ‎‡A Regulation of connexin channels by pH. Direct action of the protonated form of taurine and other aminosulfonates‏ ‎‡9 1‏
919 ‎‡a posttranslationalmodificationsofconnexin26revealedbymassspectrometry‏ ‎‡A Post-translational modifications of connexin26 revealed by mass spectrometry‏ ‎‡9 1‏
919 ‎‡a openporeblockofconnexin26andconnexin32hemichannelsbyneutralacidicandbasicglycoconjugates‏ ‎‡A Open pore block of connexin26 and connexin32 hemichannels by neutral, acidic and basic glycoconjugates‏ ‎‡9 1‏
919 ‎‡a nonjunctionalcx32mediatesantiapoptoticandprotumoreffectsviaepidermalgrowthfactorreceptorinhumancervicalcancercells‏ ‎‡A Non-junctional Cx32 mediates anti-apoptotic and pro-tumor effects via epidermal growth factor receptor in human cervical cancer cells.‏ ‎‡9 1‏
919 ‎‡a neutralacidicandbasicderivativesofanthranilamidethatconferdifferentformalchargetoreducingoligosaccharides‏ ‎‡A Neutral, acidic, and basic derivatives of anthranilamide that confer different formal charge to reducing oligosaccharides‏ ‎‡9 1‏
919 ‎‡a natureofcx30containingchannelsintheadultmousemammarygland‏ ‎‡A Nature of Cx30-containing channels in the adult mouse mammary gland‏ ‎‡9 1‏
919 ‎‡a motifsinthepermeationpathwayofconnexinchannelsmediatevoltageandca2+sensing‏ ‎‡A Motifs in the permeation pathway of connexin channels mediate voltage and Ca (2+) sensing‏ ‎‡9 1‏
919 ‎‡a moleculardynamicssimulationsofthecx26hemichannelinsightsintovoltagedependentloopgating‏ ‎‡A Molecular dynamics simulations of the Cx26 hemichannel: insights into voltage-dependent loop-gating‏ ‎‡9 1‏
919 ‎‡a mechanismofgatingbycalciuminconnexinhemichannels‏ ‎‡A Mechanism of gating by calcium in connexin hemichannels‏ ‎‡9 1‏
919 ‎‡a mechanismformodulationofgatingofconnexin26containingchannelsbytaurine‏ ‎‡A Mechanism for modulation of gating of connexin26-containing channels by taurine‏ ‎‡9 1‏
919 ‎‡a lipidraftspreparedbydifferentmethodscontaindifferentconnexinchannelsbutgapjunctionsarenotlipidrafts‏ ‎‡A Lipid rafts prepared by different methods contain different connexin channels, but gap junctions are not lipid rafts‏ ‎‡9 1‏
919 ‎‡a kineticpropertiesofavoltagedependentjunctionalconductance‏ ‎‡A Kinetic properties of a voltage-dependent junctional conductance‏ ‎‡9 1‏
919 ‎‡a isoformcompositionofconnexinchannelsdeterminesselectivityamong2messengersandunchargedmolecules‏ ‎‡A Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules‏ ‎‡9 1‏
919 ‎‡a isoelectricpointsandposttranslationalmodificationsofconnexin26andconnexin32‏ ‎‡A Isoelectric points and post-translational modifications of connexin26 and connexin32.‏ ‎‡9 1‏
946 ‎‡a b‏ ‎‡9 1‏
996 ‎‡2 LC|n 2019053445
996 ‎‡2 PTBNP|96718
996 ‎‡2 ISNI|0000000385752238
996 ‎‡2 ISNI|0000000033470245
996 ‎‡2 ISNI|0000000384884503
996 ‎‡2 LC|no2003016641
996 ‎‡2 J9U|987007447033305171
996 ‎‡2 ISNI|0000000392054761
996 ‎‡2 ISNI|000000003163113X
996 ‎‡2 ISNI|0000000035599552
996 ‎‡2 DNB|1227805314
996 ‎‡2 ISNI|0000000043299197
996 ‎‡2 NSK|000194119
996 ‎‡2 ISNI|0000000430510589
996 ‎‡2 LC|no2022112679
996 ‎‡2 LC|no2018152707
996 ‎‡2 CAOONL|ncf10862917
996 ‎‡2 ISNI|0000000032274998
996 ‎‡2 LC|n 2008030284
996 ‎‡2 LC|n 79067482
996 ‎‡2 ISNI|000000004665254X
996 ‎‡2 NTA|241554357
996 ‎‡2 LC|no2016084124
996 ‎‡2 LC|no2006080218
996 ‎‡2 DNB|1142400247
996 ‎‡2 LC|n 86825433
996 ‎‡2 DBC|87097968405424
996 ‎‡2 NUKAT|n 2018043780
996 ‎‡2 BIBSYS|90139848
996 ‎‡2 RERO|A012524086
996 ‎‡2 RERO|A012776345
996 ‎‡2 ISNI|0000000047847429
996 ‎‡2 ISNI|0000000046278957
996 ‎‡2 SUDOC|189568208
996 ‎‡2 LC|n 2008075836
996 ‎‡2 BIBSYS|90101361
996 ‎‡2 ISNI|000000004464647X
996 ‎‡2 LC|no2015066445
996 ‎‡2 NTA|091690684
996 ‎‡2 DNB|1232329533
996 ‎‡2 LC|n 82012161
996 ‎‡2 J9U|987007362481905171
996 ‎‡2 B2Q|0000057949
996 ‎‡2 ISNI|0000000045311794
996 ‎‡2 DNB|173952003
996 ‎‡2 NTA|394296265
996 ‎‡2 BIBSYS|1630354429652
996 ‎‡2 ISNI|0000000080123975
996 ‎‡2 LC|n 97802670
996 ‎‡2 LC|n 92023041
996 ‎‡2 JPG|500448089
996 ‎‡2 LC|n 2005032282
996 ‎‡2 ISNI|0000000043031561
996 ‎‡2 SUDOC|160357101
996 ‎‡2 DNB|1178085384
996 ‎‡2 CAOONL|ncf12129238
996 ‎‡2 LC|no2016004862
996 ‎‡2 NSK|000349750
996 ‎‡2 LC|n 86820771
996 ‎‡2 BIBSYS|8069671
996 ‎‡2 BIBSYS|99036226
996 ‎‡2 LC|no2023083513
996 ‎‡2 CAOONL|ncf11880671
996 ‎‡2 LC|n 91100353
996 ‎‡2 DNB|1147643571
996 ‎‡2 BNF|12476019
996 ‎‡2 NTA|140733728
996 ‎‡2 LC|n 96073825
996 ‎‡2 NTA|204002672
996 ‎‡2 ISNI|0000000488898037
996 ‎‡2 NTA|118682261
996 ‎‡2 ISNI|0000000110026368
996 ‎‡2 DNB|1020810831
996 ‎‡2 SIMACOB|123286883
996 ‎‡2 BNF|16712169
996 ‎‡2 NTA|074779672
996 ‎‡2 NUKAT|n 2009084392
996 ‎‡2 CAOONL|ncf11244426
996 ‎‡2 SUDOC|122167295
996 ‎‡2 NTA|353984779
996 ‎‡2 LC|no2011174059
996 ‎‡2 NUKAT|n 2017198003
996 ‎‡2 J9U|987007352036905171
996 ‎‡2 NII|DA03953285
996 ‎‡2 CAOONL|ncf10228202
996 ‎‡2 NUKAT|n 95100116
996 ‎‡2 DNB|1125025263
996 ‎‡2 LC|n 79022728
996 ‎‡2 SUDOC|241426405
996 ‎‡2 RERO|A017542896
996 ‎‡2 SUDOC|119888262
996 ‎‡2 NTA|329516221
996 ‎‡2 NUKAT|n 2009141991
996 ‎‡2 DNB|1118369548
996 ‎‡2 ISNI|0000000425420204
996 ‎‡2 J9U|987007281299405171
996 ‎‡2 LC|no 99020354
996 ‎‡2 BNF|15766370
996 ‎‡2 DNB|173995950
996 ‎‡2 NII|DA04025626
996 ‎‡2 RERO|A006305372
996 ‎‡2 LC|n 2004093483
996 ‎‡2 LC|no2014032398
996 ‎‡2 LC|no2022037551
996 ‎‡2 CAOONL|ncf12075920
996 ‎‡2 LC|n 93050293
996 ‎‡2 LC|n 95076113
996 ‎‡2 BNF|14520048
996 ‎‡2 NUKAT|n 2018281741
996 ‎‡2 NTA|432089896
996 ‎‡2 BIBSYS|3063691
996 ‎‡2 NII|DA11496203
996 ‎‡2 SUDOC|226340961
996 ‎‡2 NII|DA08220860
996 ‎‡2 SUDOC|264429370
996 ‎‡2 RERO|A003349190
996 ‎‡2 CAOONL|ncf11668518
996 ‎‡2 DNB|1146519680
996 ‎‡2 N6I|vtls001301250
996 ‎‡2 SUDOC|162078692
996 ‎‡2 BIBSYS|1020770
996 ‎‡2 NII|DA07863650
996 ‎‡2 JPG|500277807
996 ‎‡2 J9U|987007329966605171
996 ‎‡2 NTA|126304874
996 ‎‡2 BIBSYS|1634281499225
996 ‎‡2 J9U|987007384147805171
996 ‎‡2 LC|no2007065056
996 ‎‡2 LC|n 2020066280
996 ‎‡2 LC|n 91091343
996 ‎‡2 BIBSYS|9025666
996 ‎‡2 NTA|074699105
996 ‎‡2 ISNI|0000000117075007
996 ‎‡2 SUDOC|07732823X
996 ‎‡2 LC|n 2006085139
996 ‎‡2 SUDOC|136873138
996 ‎‡2 DNB|173409113
996 ‎‡2 ISNI|0000000041437955
996 ‎‡2 LC|n 99031600
996 ‎‡2 ISNI|0000000115110825
996 ‎‡2 LC|no2013022830
996 ‎‡2 LC|n 92042629
996 ‎‡2 NLA|000035172884
996 ‎‡2 RERO|A026552370
996 ‎‡2 LC|no2002044853
996 ‎‡2 LC|no2008131303
996 ‎‡2 J9U|987007459811205171
996 ‎‡2 BIBSYS|5002188
996 ‎‡2 LC|n 97880363
996 ‎‡2 BIBSYS|90792351
996 ‎‡2 ISNI|0000000391885459
996 ‎‡2 LC|n 83156971
996 ‎‡2 NKC|xx0178501
996 ‎‡2 RERO|A013286543
996 ‎‡2 BIBSYS|90912646
996 ‎‡2 LC|no2019164051
996 ‎‡2 J9U|987007296433605171
996 ‎‡2 DNB|1227805357
996 ‎‡2 B2Q|0000393207
996 ‎‡2 SUDOC|203067746
996 ‎‡2 BIBSYS|90299444
996 ‎‡2 NUKAT|n 2007148885
996 ‎‡2 ISNI|0000000394062976
996 ‎‡2 NKC|jx20060225001
996 ‎‡2 DNB|128925167
996 ‎‡2 DNB|1157828612
996 ‎‡2 BIBSYS|9045592
996 ‎‡2 NTA|074090887
996 ‎‡2 CAOONL|ncf10261304
996 ‎‡2 SUDOC|098313045
996 ‎‡2 BIBSYS|90807925
996 ‎‡2 LC|n 90695588
996 ‎‡2 LC|n 97057210
996 ‎‡2 LC|n 93028064
996 ‎‡2 DNB|1155835743
996 ‎‡2 SUDOC|085961450
996 ‎‡2 CAOONL|ncf10255947
996 ‎‡2 CAOONL|ncf10626248
996 ‎‡2 LC|n 88244028
996 ‎‡2 LC|n 2006054418
996 ‎‡2 SUDOC|175472203
996 ‎‡2 LC|n 84177588
996 ‎‡2 RERO|A003349124
996 ‎‡2 NTA|410738336
996 ‎‡2 BIBSYS|13026857
996 ‎‡2 ISNI|0000000049181392
996 ‎‡2 CAOONL|ncf10130108
996 ‎‡2 LC|no2019132313
996 ‎‡2 LC|nr 91002587
996 ‎‡2 ISNI|0000000051023799
996 ‎‡2 RERO|A003349191
996 ‎‡2 CAOONL|ncf10675631
996 ‎‡2 BIBSYS|90704477
996 ‎‡2 LC|n 91071498
996 ‎‡2 BNF|16548341
996 ‎‡2 CAOONL|ncf10862915
996 ‎‡2 LC|no2016102360
996 ‎‡2 LC|no 93033126
996 ‎‡2 LC|no2018039744
996 ‎‡2 RERO|A003349123
996 ‎‡2 CAOONL|ncf11638812
996 ‎‡2 LC|n 94082235
996 ‎‡2 NTA|067590993
996 ‎‡2 LC|no2014161280
996 ‎‡2 BIBSYS|90102958
996 ‎‡2 LC|n 97005328
996 ‎‡2 CAOONL|ncf10138151
996 ‎‡2 ISNI|0000000035340145
996 ‎‡2 ISNI|0000000360519130
996 ‎‡2 DNB|1076367356
996 ‎‡2 ISNI|0000000077382343
996 ‎‡2 J9U|987007278943405171
996 ‎‡2 J9U|987007440067505171
996 ‎‡2 BIBSYS|90183752
996 ‎‡2 LC|no2010043311
996 ‎‡2 DNB|1044619589
996 ‎‡2 ISNI|000000003507617X
996 ‎‡2 DNB|1300058978
996 ‎‡2 LC|no 95042375
996 ‎‡2 NUKAT|nx2022998187
996 ‎‡2 B2Q|0000374362
996 ‎‡2 NDL|00513749
996 ‎‡2 NDL|00513748
996 ‎‡2 ISNI|0000000378401755
996 ‎‡2 LC|nb2012024438
996 ‎‡2 PLWABN|9811252165105606
996 ‎‡2 ISNI|0000000409523553
996 ‎‡2 LC|no 99060609
996 ‎‡2 RERO|A003349131
996 ‎‡2 CAOONL|ncf10418506
996 ‎‡2 ISNI|0000000500871137
996 ‎‡2 SUDOC|056875827
996 ‎‡2 NTA|343784971
996 ‎‡2 NII|DA16685790
996 ‎‡2 B2Q|0001186592
996 ‎‡2 RERO|A003349224
996 ‎‡2 ISNI|0000000030118481
996 ‎‡2 LC|n 89617216
996 ‎‡2 J9U|987007580982705171
996 ‎‡2 LC|n 2007024965
996 ‎‡2 SUDOC|026915170
996 ‎‡2 LC|n 2012042287
996 ‎‡2 J9U|987007345950705171
996 ‎‡2 RERO|A018126685
996 ‎‡2 J9U|987007447304705171
996 ‎‡2 LC|n 90693380
996 ‎‡2 ISNI|0000000116337474
996 ‎‡2 LC|n 2003048352
996 ‎‡2 RERO|A003349229
996 ‎‡2 NTA|16774738X
997 ‎‡a 0 0 lived 0 0‏ ‎‡9 1‏