VIAF

Virtual International Authority File

Search

Leader 00000nz a2200037n 45 0
001 WKP|Q59115171 (VIAF cluster) (Authority/Source Record)
003 WKP
005 20241121000239.0
008 241121nneanz||abbn n and d
035 ‎‡a (WKP)Q59115171‏
024 ‎‡a 0000-0002-3665-7106‏ ‎‡2 orcid‏
024 ‎‡a 28268038100‏ ‎‡2 scopus‏
035 ‎‡a (OCoLC)Q59115171‏
100 0 ‎‡a Anthal I.P.M. Smits‏ ‎‡c researcher ORCID ID = 0000-0002-3665-7106‏ ‎‡9 en‏
400 0 ‎‡a Anthal I.P.M. Smits‏ ‎‡c wetenschapper‏ ‎‡9 nl‏
670 ‎‡a Author's A mesofluidics-based test platform for systematic development of scaffolds for in situ cardiovascular tissue engineering.‏
670 ‎‡a Author's Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective.‏
670 ‎‡a Author's Can We Grow Valves Inside the Heart? Perspective on Material-based In Situ Heart Valve Tissue Engineering.‏
670 ‎‡a Author's Cyclic Strain Affects Macrophage Cytokine Secretion and Extracellular Matrix Turnover in Electrospun Scaffolds‏
670 ‎‡a Author's Decoupling the Effect of Shear Stress and Stretch on Tissue Growth and Remodeling in a Vascular Graft‏
670 ‎‡a Author's Development of Non-Cell Adhesive Vascular Grafts Using Supramolecular Building Blocks.‏
670 ‎‡a Author's Differential Leaflet Remodeling of Bone Marrow Cell Pre-Seeded Versus Nonseeded Bioresorbable Transcatheter Pulmonary Valve Replacements‏
670 ‎‡a Author's Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters.‏
670 ‎‡a Author's Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides.‏
670 ‎‡a Author's Ex vivo culture platform for assessment of cartilage repair treatment strategies.‏
670 ‎‡a Author's Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages - implications for in situ vascular tissue engineering‏
670 ‎‡a Author's Host Response and Neo-Tissue Development during Resorption of a Fast Degrading Supramolecular Electrospun Arterial Scaffold‏
670 ‎‡a Author's Human In Vitro Model Mimicking Material-Driven Vascular Regeneration Reveals How Cyclic Stretch and Shear Stress Differentially Modulate Inflammation and Matrix Deposition‏
670 ‎‡a Author's In situ heart valve tissue engineering using a bioresorbable elastomeric implant - From material design to 12 months follow-up in sheep.‏
670 ‎‡a Author's In Situ Tissue Engineering of Functional Small-Diameter Blood Vessels by Host Circulating Cells Only.‏
670 ‎‡a Author's In Situ Tissue Engineering: Seducing the Body to Regenerate‏
670 ‎‡a Author's Layer-specific cell differentiation in bi-layered vascular grafts under flow perfusion‏
670 ‎‡a Author's Macrophage-Driven Biomaterial Degradation Depends on Scaffold Microarchitecture‏
670 ‎‡a Author's Modulation of macrophage phenotype and protein secretion via heparin-IL-4 functionalized supramolecular elastomers.‏
670 ‎‡a Author's Probing Single-Cell Macrophage Polarization and Heterogeneity Using Thermo-Reversible Hydrogels in Droplet-Based Microfluidics‏
670 ‎‡a Author's Shear flow affects selective monocyte recruitment into MCP-1-loaded scaffolds‏
670 ‎‡a Author's Sheep-Specific Immunohistochemical Panel for the Evaluation of Regenerative and Inflammatory Processes in Tissue-Engineered Heart Valves‏
670 ‎‡a Author's Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow.‏
670 ‎‡a Author's The degradation and performance of electrospun supramolecular vascular scaffolds examined upon in vitro enzymatic exposure‏
670 ‎‡a Author's Then and now: hypes and hopes of regenerative medicine.‏
670 ‎‡a Author's Tissue engineering meets immunoengineering: Prospective on personalized in situ tissue engineering strategies‏
670 ‎‡a Author's Tissue engineering of heart valves: advances and current challenges.‏
909 ‎‡a (scopus) 28268038100‏ ‎‡9 1‏
909 ‎‡a (orcid) 0000000236657106‏ ‎‡9 1‏
919 ‎‡a tissueengineeringofheartvalvesadvancesandcurrentchallenges‏ ‎‡A Tissue engineering of heart valves: advances and current challenges.‏ ‎‡9 1‏
919 ‎‡a tissueengineeringmeetsimmunoengineeringprospectiveonpersonalizedinsitutissueengineeringstrategies‏ ‎‡A Tissue engineering meets immunoengineering: Prospective on personalized in situ tissue engineering strategies‏ ‎‡9 1‏
919 ‎‡a thenandnowhypesandhopesofregenerativemedicine‏ ‎‡A Then and now: hypes and hopes of regenerative medicine.‏ ‎‡9 1‏
919 ‎‡a degradationandperformanceofelectrospunsupramolecularvascularscaffoldsexamineduponinvitroenzymaticexposure‏ ‎‡A The degradation and performance of electrospun supramolecular vascular scaffolds examined upon in vitro enzymatic exposure‏ ‎‡9 1‏
919 ‎‡a synergisticproteinsecretionbymesenchymalstromalcellsseededin3dscaffoldsandcirculatingleukocytesinphysiologicalflow‏ ‎‡A Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow.‏ ‎‡9 1‏
919 ‎‡a sheepspecificimmunohistochemicalpanelfortheevaluationofregenerativeandinflammatoryprocessesintissueengineeredheartvalves‏ ‎‡A Sheep-Specific Immunohistochemical Panel for the Evaluation of Regenerative and Inflammatory Processes in Tissue-Engineered Heart Valves‏ ‎‡9 1‏
919 ‎‡a shearflowaffectsselectivemonocyterecruitmentintomcp1loadedscaffolds‏ ‎‡A Shear flow affects selective monocyte recruitment into MCP-1-loaded scaffolds‏ ‎‡9 1‏
919 ‎‡a probingsinglecellmacrophagepolarizationandheterogeneityusingthermoreversiblehydrogelsindropletbasedmicrofluidics‏ ‎‡A Probing Single-Cell Macrophage Polarization and Heterogeneity Using Thermo-Reversible Hydrogels in Droplet-Based Microfluidics‏ ‎‡9 1‏
919 ‎‡a modulationofmacrophagephenotypeandproteinsecretionviaheparinil4functionalizedsupramolecularelastomers‏ ‎‡A Modulation of macrophage phenotype and protein secretion via heparin-IL-4 functionalized supramolecular elastomers.‏ ‎‡9 1‏
919 ‎‡a macrophagedrivenbiomaterialdegradationdependsonscaffoldmicroarchitecture‏ ‎‡A Macrophage-Driven Biomaterial Degradation Depends on Scaffold Microarchitecture‏ ‎‡9 1‏
919 ‎‡a layerspecificcelldifferentiationinbilayeredvasculargraftsunderflowperfusion‏ ‎‡A Layer-specific cell differentiation in bi-layered vascular grafts under flow perfusion‏ ‎‡9 1‏
919 ‎‡a insitutissueengineeringseducingthebodytoregenerate‏ ‎‡A In Situ Tissue Engineering: Seducing the Body to Regenerate‏ ‎‡9 1‏
919 ‎‡a insitutissueengineeringoffunctionalsmalldiameterbloodvesselsbyhostcirculatingcellsonly‏ ‎‡A In Situ Tissue Engineering of Functional Small-Diameter Blood Vessels by Host Circulating Cells Only.‏ ‎‡9 1‏
919 ‎‡a insituheartvalvetissueengineeringusingabioresorbableelastomericimplantfrommaterialdesignto12monthsfollowupinsheep‏ ‎‡A In situ heart valve tissue engineering using a bioresorbable elastomeric implant - From material design to 12 months follow-up in sheep.‏ ‎‡9 1‏
919 ‎‡a humaninvitromodelmimickingmaterialdrivenvascularregenerationrevealshowcyclicstretchandshearstressdifferentiallymodulateinflammationandmatrixdeposition‏ ‎‡A Human In Vitro Model Mimicking Material-Driven Vascular Regeneration Reveals How Cyclic Stretch and Shear Stress Differentially Modulate Inflammation and Matrix Deposition‏ ‎‡9 1‏
919 ‎‡a hostresponseandneotissuedevelopmentduringresorptionofafastdegradingsupramolecularelectrospunarterialscaffold‏ ‎‡A Host Response and Neo-Tissue Development during Resorption of a Fast Degrading Supramolecular Electrospun Arterial Scaffold‏ ‎‡9 1‏
919 ‎‡a hemodynamicloadsdistinctivelyimpactthesecretoryprofileofbiomaterialactivatedmacrophagesimplicationsforinsituvasculartissueengineering‏ ‎‡A Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages - implications for in situ vascular tissue engineering‏ ‎‡9 1‏
919 ‎‡a exvivocultureplatformforassessmentofcartilagerepairtreatmentstrategies‏ ‎‡A Ex vivo culture platform for assessment of cartilage repair treatment strategies.‏ ‎‡9 1‏
919 ‎‡a earlyinsitucellularizationofasupramolecularvasculargraftismodifiedbysyntheticstromalcellderivedfactor1αderivedpeptides‏ ‎‡A Early in-situ cellularization of a supramolecular vascular graft is modified by synthetic stromal cell-derived factor-1α derived peptides.‏ ‎‡9 1‏
919 ‎‡a differentialresponseofendothelialandendothelialcolonyformingcellsonelectrospunscaffoldswithdistinctmicrofiberdiameters‏ ‎‡A Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters.‏ ‎‡9 1‏
919 ‎‡a differentialleafletremodelingofbonemarrowcellpreseededversusnonseededbioresorbabletranscatheterpulmonaryvalvereplacements‏ ‎‡A Differential Leaflet Remodeling of Bone Marrow Cell Pre-Seeded Versus Nonseeded Bioresorbable Transcatheter Pulmonary Valve Replacements‏ ‎‡9 1‏
919 ‎‡a developmentofnoncelladhesivevasculargraftsusingsupramolecularbuildingblocks‏ ‎‡A Development of Non-Cell Adhesive Vascular Grafts Using Supramolecular Building Blocks.‏ ‎‡9 1‏
919 ‎‡a decouplingtheeffectofshearstressandstretchontissuegrowthandremodelinginavasculargraft‏ ‎‡A Decoupling the Effect of Shear Stress and Stretch on Tissue Growth and Remodeling in a Vascular Graft‏ ‎‡9 1‏
919 ‎‡a cyclicstrainaffectsmacrophagecytokinesecretionandextracellularmatrixturnoverinelectrospunscaffolds‏ ‎‡A Cyclic Strain Affects Macrophage Cytokine Secretion and Extracellular Matrix Turnover in Electrospun Scaffolds‏ ‎‡9 1‏
919 ‎‡a canwegrowvalvesinsidetheheartperspectiveonmaterialbasedinsituheartvalvetissueengineering‏ ‎‡A Can We Grow Valves Inside the Heart? Perspective on Material-based In Situ Heart Valve Tissue Engineering.‏ ‎‡9 1‏
919 ‎‡a biomaterialdriveninsitucardiovasculartissueengineeringamultidisciplinaryperspective‏ ‎‡A Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective.‏ ‎‡9 1‏
919 ‎‡a mesofluidicsbasedtestplatformforsystematicdevelopmentofscaffoldsforinsitucardiovasculartissueengineering‏ ‎‡A A mesofluidics-based test platform for systematic development of scaffolds for in situ cardiovascular tissue engineering.‏ ‎‡9 1‏
996 ‎‡2 NTA|152190406
996 ‎‡2 ISNI|0000000389779198
996 ‎‡2 NTA|073636029
996 ‎‡2 NTA|072049243
996 ‎‡2 NTA|226746593
996 ‎‡2 NTA|242094929
996 ‎‡2 ISNI|000000039061207X
996 ‎‡2 ISNI|0000000394972339
996 ‎‡2 DNB|127941037
996 ‎‡2 SUDOC|164473254
996 ‎‡2 ISNI|0000000391004498
996 ‎‡2 NTA|070087571
996 ‎‡2 LC|no2023001241
996 ‎‡2 NTA|074791672
996 ‎‡2 NTA|327783257
996 ‎‡2 LC|nr 89017564
996 ‎‡2 NTA|073015148
996 ‎‡2 SUDOC|130282898
996 ‎‡2 NTA|067937640
996 ‎‡2 NTA|074680471
996 ‎‡2 SUDOC|103266526
996 ‎‡2 NTA|143338412
996 ‎‡2 SUDOC|181578212
996 ‎‡2 ISNI|0000000394021357
996 ‎‡2 NTA|271405228
996 ‎‡2 ISNI|0000000423332892
996 ‎‡2 ISNI|0000000391067798
996 ‎‡2 ISNI|0000000390801639
996 ‎‡2 ISNI|0000000396600133
996 ‎‡2 NTA|074031716
996 ‎‡2 NTA|108741214
996 ‎‡2 NTA|391932179
996 ‎‡2 NTA|080182046
996 ‎‡2 ISNI|0000000395496151
996 ‎‡2 NTA|431275718
996 ‎‡2 ISNI|0000000394432666
996 ‎‡2 ISNI|0000000391252571
996 ‎‡2 NTA|304813710
997 ‎‡a 0 0 lived 0 0‏ ‎‡9 1‏