VIAF

Virtual International Authority File

Search

Leader 00000nz a2200037n 45 0
001 WKP|Q59923440 (VIAF cluster) (Authority/Source Record)
003 WKP
005 20241120235923.0
008 241120nneanz||abbn n and d
035 ‎‡a (WKP)Q59923440‏
024 ‎‡a 0000-0002-4999-6588‏ ‎‡2 orcid‏
024 ‎‡a 7007041566‏ ‎‡2 scopus‏
035 ‎‡a (OCoLC)Q59923440‏
100 0 ‎‡a Albert Romano-Rodríguez‏ ‎‡c researcher ORCID ID = 0000-0002-4999-6588‏ ‎‡9 en‏
375 ‎‡a 1‏ ‎‡2 iso5218‏
400 0 ‎‡a Albert Romano-Rodríguez‏ ‎‡c onderzoeker‏ ‎‡9 nl‏
670 ‎‡a Author's A model for the response towards oxidizing gases of photoactivated sensors based on individual SnO2 nanowires‏
670 ‎‡a Author's An array of ordered pillars with retentive properties for pressure-driven liquid chromatography fabricated directly from an unmodified cyclo olefin polymer‏
670 ‎‡a Author's Chemical Vapor Growth of One-dimensional Magnetite Nanostructures‏
670 ‎‡a Author's Detection of amines with chromium-doped WO3 mesoporous material‏
670 ‎‡a Author's Effect of the nanostructure and surface chemistry on the gas adsorption properties of macroscopic multiwalled carbon nanotube ropes‏
670 ‎‡a Author's Electrical properties of individual tin oxide nanowires contacted to platinum electrodes‏
670 ‎‡a Author's Electrical response of MOSiC gas sensors to CO, NO/sub 2/ and C/sub 3/H/sub 8/‏
670 ‎‡a Author's Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires‏
670 ‎‡a Author's Experimental study of the depth influence on the band broadening effect in a cyclo-olefin polymer column containing an array of ordered pillars‏
670 ‎‡a Author's Experimental study of the retention properties of a cyclo olefin polymer pillar array column in reversed-phase mode‏
670 ‎‡a Author's Fabrication and electrical characterization of circuits based on individual tin oxide nanowires‏
670 ‎‡a Author's Fabrication of bottom-up gas sensors based on individual SnO 2 nanowires and suspended microhotplates‏
670 ‎‡a Author's Facile integration of ordered nanowires in functional devices‏
670 ‎‡a Author's Focused-ion-beam-assisted tuning of thin-film bulk acoustic wave resonators‏
670 ‎‡a Author's Focused-ion-beam-assisted tuning of thin-film bulk acoustic wave resonators (FBARs)‏
670 ‎‡a Author's Functional materials for environmental sensors and energy systems.‏
670 ‎‡a Author's Gas Nanosensors Based on Individual Indium Oxide Nanostructures‏
670 ‎‡a Author's Gas Sensing Devices Based on 1D Metal-Oxide Nanostructures: Fabrication, Testing and Device Integration‏
670 ‎‡a Author's Gas sensors based on individual indium oxide nanowire‏
670 ‎‡a Author's Hybrid integration of VCSELs and microlenses for a particle detection microoptical system‏
670 ‎‡a Author's Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2Nanowires‏
670 ‎‡a Author's Integration of Nanowires in New Devices and Circuit Architectures: Recent Developments and Challenges‏
670 ‎‡a Author's Localized and distributed mass detectors with high sensitivity based on thin-film bulk acoustic resonators‏
670 ‎‡a Author's Localized growth and in situ integration of nanowires for device applications‏
670 ‎‡a Author's Localized-mass detection based on thin-film bulk acoustic wave resonators‏
670 ‎‡a Author's Localized-mass detection based on thin-film bulk acoustic wave resonators (FBAR): Area and mass location aspects‏
670 ‎‡a Author's Locally Grown SnO 2 NWs as Low Power Ammonia Sensor‏
670 ‎‡a Author's Low-cost Fabrication of Zero-power Metal Oxide Nanowire Gas Sensors: Trends and Challenges‏
670 ‎‡a Author's Low temperature humidity sensor based on Ge nanowires selectively grown on suspended microhotplates‏
670 ‎‡a Author's Nanosensors: Controlling Transduction Mechanisms at the Nanoscale Using Metal Oxides and Semiconductors‏
670 ‎‡a Author's On the role of individual metal oxide nanowires in the scaling down of chemical sensors‏
670 ‎‡a Author's Optical particle detection in liquid suspensions with a hybrid integrated microsystem‏
670 ‎‡a Author's P2K-2 Sensitivity Considerations in Localized Mass Detection Based on Thin-Film Bulk Acoustic Wave Resonators‏
670 ‎‡a Author's Photoexcited Individual Nanowires: Key Elements in Room Temperature Detection of Oxidizing Gases‏
670 ‎‡a Author's Portable microsensors based on individual SnO2 nanowires‏
670 ‎‡a Author's Pushing the Composition Limit of Anisotropic Ge1–xSnx Nanostructures and Determination of Their Thermal Stability‏
670 ‎‡a Author's Room temperature conductometric gas sensors based on metal oxide nanowires and nanocrystals‏
670 ‎‡a Author's Selectively arranged single-wire based nanosensor array systems for gas monitoring‏
670 ‎‡a Author's Site-selectively grown SnO 2 NWs networks on micromembranes for efficient ammonia sensing in humid conditions‏
670 ‎‡a Author's Site-Specific Growth and in Situ Integration of Different Nanowire Material Networks on a Single Chip: Toward a Nanowire-Based Electronic Nose for Gas Detection‏
670 ‎‡a Author's Synthesis and applications of one-dimensional semiconductors‏
670 ‎‡a Author's Template synthesis and forming electrical contacts to single Au nanowires by focused ion beam techniques‏
670 ‎‡a Author's The effects of electron–hole separation on the photoconductivity of individual metal oxide nanowires‏
670 ‎‡a Author's Toward a Systematic Understanding of Photodetectors Based on Individual Metal Oxide Nanowires‏
670 ‎‡a Author's Ultralow power consumption gas sensors based on self-heated individual nanowires‏
670 ‎‡a Author's Water vapor detection with individual tin oxide nanowires‏
670 ‎‡a wikidata authority control‏ ‎‡u https://viaf.org/processed/BNE|XX925601‏
670 ‎‡a wikidata authority control‏ ‎‡u https://viaf.org/viaf/87863090‏
909 ‎‡a (scopus) 7007041566‏ ‎‡9 1‏
909 ‎‡a (orcid) 0000000249996588‏ ‎‡9 1‏
919 ‎‡a templatesynthesisandformingelectricalcontactstosingleaunanowiresbyfocusedionbeamtechniques‏ ‎‡A Template synthesis and forming electrical contacts to single Au nanowires by focused ion beam techniques‏ ‎‡9 1‏
919 ‎‡a synthesisandapplicationsof1dimensionalsemiconductors‏ ‎‡A Synthesis and applications of one-dimensional semiconductors‏ ‎‡9 1‏
919 ‎‡a sitespecificgrowthandinsituintegrationofdifferentnanowirematerialnetworksonasinglechiptowardananowirebasedelectronicnoseforgasdetection‏ ‎‡A Site-Specific Growth and in Situ Integration of Different Nanowire Material Networks on a Single Chip: Toward a Nanowire-Based Electronic Nose for Gas Detection‏ ‎‡9 1‏
919 ‎‡a siteselectivelygrownsno2nwsnetworksonmicromembranesforefficientammoniasensinginhumidconditions‏ ‎‡A Site-selectively grown SnO 2 NWs networks on micromembranes for efficient ammonia sensing in humid conditions‏ ‎‡9 1‏
919 ‎‡a selectivelyarrangedsinglewirebasednanosensorarraysystemsforgasmonitoring‏ ‎‡A Selectively arranged single-wire based nanosensor array systems for gas monitoring‏ ‎‡9 1‏
919 ‎‡a roomtemperatureconductometricgassensorsbasedonmetaloxidenanowiresandnanocrystals‏ ‎‡A Room temperature conductometric gas sensors based on metal oxide nanowires and nanocrystals‏ ‎‡9 1‏
919 ‎‡a pushingthecompositionlimitofanisotropicge1xsnxnanostructuresanddeterminationoftheirthermalstability‏ ‎‡A Pushing the Composition Limit of Anisotropic Ge1–xSnx Nanostructures and Determination of Their Thermal Stability‏ ‎‡9 1‏
919 ‎‡a portablemicrosensorsbasedonindividualsno2nanowires‏ ‎‡A Portable microsensors based on individual SnO2 nanowires‏ ‎‡9 1‏
919 ‎‡a photoexcitedindividualnanowireskeyelementsinroomtemperaturedetectionofoxidizinggases‏ ‎‡A Photoexcited Individual Nanowires: Key Elements in Room Temperature Detection of Oxidizing Gases‏ ‎‡9 1‏
919 ‎‡a p2k2sensitivityconsiderationsinlocalizedmassdetectionbasedonthinfilmbulkacousticwaveresonators‏ ‎‡A P2K-2 Sensitivity Considerations in Localized Mass Detection Based on Thin-Film Bulk Acoustic Wave Resonators‏ ‎‡9 1‏
919 ‎‡a opticalparticledetectioninliquidsuspensionswithahybridintegratedmicrosystem‏ ‎‡A Optical particle detection in liquid suspensions with a hybrid integrated microsystem‏ ‎‡9 1‏
919 ‎‡a ontheroleofindividualmetaloxidenanowiresinthescalingdownofchemicalsensors‏ ‎‡A On the role of individual metal oxide nanowires in the scaling down of chemical sensors‏ ‎‡9 1‏
919 ‎‡a nanosensorscontrollingtransductionmechanismsatthenanoscaleusingmetaloxidesandsemiconductors‏ ‎‡A Nanosensors: Controlling Transduction Mechanisms at the Nanoscale Using Metal Oxides and Semiconductors‏ ‎‡9 1‏
919 ‎‡a lowtemperaturehumiditysensorbasedongenanowiresselectivelygrownonsuspendedmicrohotplates‏ ‎‡A Low temperature humidity sensor based on Ge nanowires selectively grown on suspended microhotplates‏ ‎‡9 1‏
919 ‎‡a lowcostfabricationof0powermetaloxidenanowiregassensorstrendsandchallenges‏ ‎‡A Low-cost Fabrication of Zero-power Metal Oxide Nanowire Gas Sensors: Trends and Challenges‏ ‎‡9 1‏
919 ‎‡a locallygrownsno2nwsaslowpowerammoniasensor‏ ‎‡A Locally Grown SnO 2 NWs as Low Power Ammonia Sensor‏ ‎‡9 1‏
919 ‎‡a localizedmassdetectionbasedonthinfilmbulkacousticwaveresonatorsfbarareaandmasslocationaspects‏ ‎‡A Localized-mass detection based on thin-film bulk acoustic wave resonators (FBAR): Area and mass location aspects‏ ‎‡9 1‏
919 ‎‡a localizedmassdetectionbasedonthinfilmbulkacousticwaveresonators‏ ‎‡A Localized-mass detection based on thin-film bulk acoustic wave resonators‏ ‎‡9 1‏
919 ‎‡a localizedgrowthandinsituintegrationofnanowiresfordeviceapplications‏ ‎‡A Localized growth and in situ integration of nanowires for device applications‏ ‎‡9 1‏
919 ‎‡a localizedanddistributedmassdetectorswithhighsensitivitybasedonthinfilmbulkacousticresonators‏ ‎‡A Localized and distributed mass detectors with high sensitivity based on thin-film bulk acoustic resonators‏ ‎‡9 1‏
919 ‎‡a integrationofnanowiresinnewdevicesandcircuitarchitecturesrecentdevelopmentsandchallenges‏ ‎‡A Integration of Nanowires in New Devices and Circuit Architectures: Recent Developments and Challenges‏ ‎‡9 1‏
919 ‎‡a insightintotheroleofoxygendiffusioninthesensingmechanismsofsno2nanowires‏ ‎‡A Insight into the Role of Oxygen Diffusion in the Sensing Mechanisms of SnO2Nanowires‏ ‎‡9 1‏
919 ‎‡a hybridintegrationofvcselsandmicrolensesforaparticledetectionmicroopticalsystem‏ ‎‡A Hybrid integration of VCSELs and microlenses for a particle detection microoptical system‏ ‎‡9 1‏
919 ‎‡a gassensorsbasedonindividualindiumoxidenanowire‏ ‎‡A Gas sensors based on individual indium oxide nanowire‏ ‎‡9 1‏
919 ‎‡a gassensingdevicesbasedon1dmetaloxidenanostructuresfabricationtestinganddeviceintegration‏ ‎‡A Gas Sensing Devices Based on 1D Metal-Oxide Nanostructures: Fabrication, Testing and Device Integration‏ ‎‡9 1‏
919 ‎‡a gasnanosensorsbasedonindividualindiumoxidenanostructures‏ ‎‡A Gas Nanosensors Based on Individual Indium Oxide Nanostructures‏ ‎‡9 1‏
919 ‎‡a functionalmaterialsforenvironmentalsensorsandenergysystems‏ ‎‡A Functional materials for environmental sensors and energy systems.‏ ‎‡9 1‏
919 ‎‡a focusedionbeamassistedtuningofthinfilmbulkacousticwaveresonatorsfbars‏ ‎‡A Focused-ion-beam-assisted tuning of thin-film bulk acoustic wave resonators (FBARs)‏ ‎‡9 1‏
919 ‎‡a focusedionbeamassistedtuningofthinfilmbulkacousticwaveresonators‏ ‎‡A Focused-ion-beam-assisted tuning of thin-film bulk acoustic wave resonators‏ ‎‡9 1‏
919 ‎‡a facileintegrationoforderednanowiresinfunctionaldevices‏ ‎‡A Facile integration of ordered nanowires in functional devices‏ ‎‡9 1‏
919 ‎‡a fabricationofbottomupgassensorsbasedonindividualsno2nanowiresandsuspendedmicrohotplates‏ ‎‡A Fabrication of bottom-up gas sensors based on individual SnO 2 nanowires and suspended microhotplates‏ ‎‡9 1‏
919 ‎‡a fabricationandelectricalcharacterizationofcircuitsbasedonindividualtinoxidenanowires‏ ‎‡A Fabrication and electrical characterization of circuits based on individual tin oxide nanowires‏ ‎‡9 1‏
919 ‎‡a experimentalstudyoftheretentionpropertiesofacycloolefinpolymerpillararraycolumninreversedphasemode‏ ‎‡A Experimental study of the retention properties of a cyclo olefin polymer pillar array column in reversed-phase mode‏ ‎‡9 1‏
919 ‎‡a experimentalstudyofthedepthinfluenceonthebandbroadeningeffectinacycloolefinpolymercolumncontaininganarrayoforderedpillars‏ ‎‡A Experimental study of the depth influence on the band broadening effect in a cyclo-olefin polymer column containing an array of ordered pillars‏ ‎‡9 1‏
919 ‎‡a equivalencebetweenthermalandroomtemperatureuvlightmodulatedresponsesofgassensorsbasedonindividualsno2nanowires‏ ‎‡A Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires‏ ‎‡9 1‏
919 ‎‡a electricalresponseofmosicgassensorstoconosub2and100sub3hsub8‏ ‎‡A Electrical response of MOSiC gas sensors to CO, NO/sub 2/ and C/sub 3/H/sub 8/‏ ‎‡9 1‏
919 ‎‡a electricalpropertiesofindividualtinoxidenanowirescontactedtoplatinumelectrodes‏ ‎‡A Electrical properties of individual tin oxide nanowires contacted to platinum electrodes‏ ‎‡9 1‏
919 ‎‡a effectofthenanostructureandsurfacechemistryonthegasadsorptionpropertiesofmacroscopicmultiwalledcarbonnanotuberopes‏ ‎‡A Effect of the nanostructure and surface chemistry on the gas adsorption properties of macroscopic multiwalled carbon nanotube ropes‏ ‎‡9 1‏
919 ‎‡a detectionofamineswithchromiumdopedwo3mesoporousmaterial‏ ‎‡A Detection of amines with chromium-doped WO3 mesoporous material‏ ‎‡9 1‏
919 ‎‡a chemicalvaporgrowthof1dimensionalmagnetitenanostructures‏ ‎‡A Chemical Vapor Growth of One-dimensional Magnetite Nanostructures‏ ‎‡9 1‏
919 ‎‡a arrayoforderedpillarswithretentivepropertiesforpressuredrivenliquidchromatographyfabricateddirectlyfromanunmodifiedcycloolefinpolymer‏ ‎‡A An array of ordered pillars with retentive properties for pressure-driven liquid chromatography fabricated directly from an unmodified cyclo olefin polymer‏ ‎‡9 1‏
919 ‎‡a modelfortheresponsetowardsoxidizinggasesofphotoactivatedsensorsbasedonindividualsno2nanowires‏ ‎‡A A model for the response towards oxidizing gases of photoactivated sensors based on individual SnO2 nanowires‏ ‎‡9 1‏
919 ‎‡a watervapordetectionwithindividualtinoxidenanowires‏ ‎‡A Water vapor detection with individual tin oxide nanowires‏ ‎‡9 1‏
919 ‎‡a ultralowpowerconsumptiongassensorsbasedonselfheatedindividualnanowires‏ ‎‡A Ultralow power consumption gas sensors based on self-heated individual nanowires‏ ‎‡9 1‏
919 ‎‡a towardasystematicunderstandingofphotodetectorsbasedonindividualmetaloxidenanowires‏ ‎‡A Toward a Systematic Understanding of Photodetectors Based on Individual Metal Oxide Nanowires‏ ‎‡9 1‏
919 ‎‡a effectsofelectronholeseparationonthephotoconductivityofindividualmetaloxidenanowires‏ ‎‡A The effects of electron–hole separation on the photoconductivity of individual metal oxide nanowires‏ ‎‡9 1‏
946 ‎‡a b‏ ‎‡9 1‏
996 ‎‡2 PLWABN|9812830875505606
996 ‎‡2 DNB|1057366870
996 ‎‡2 ISNI|0000000072454782
996 ‎‡2 RERO|A018693378
996 ‎‡2 BNF|15346014
996 ‎‡2 DNB|1117045595
996 ‎‡2 BLBNB|001456593
996 ‎‡2 ISNI|0000000114571398
996 ‎‡2 CAOONL|ncf11948255
996 ‎‡2 BNCHL|10000000000000000201119
996 ‎‡2 BNE|XX5250148
996 ‎‡2 ISNI|0000000033842301
996 ‎‡2 LC|n 96069322
996 ‎‡2 ISNI|0000000066386461
996 ‎‡2 ISNI|0000000119386474
996 ‎‡2 LC|n 81069193
996 ‎‡2 ARBABN|000058866
996 ‎‡2 NTA|133530191
996 ‎‡2 RERO|A011975620
996 ‎‡2 DNB|1205091785
996 ‎‡2 PTBNP|271519
996 ‎‡2 DNB|1057141194
996 ‎‡2 J9U|987007384044105171
996 ‎‡2 SUDOC|188572155
996 ‎‡2 BNE|XX5844345
996 ‎‡2 LC|n 96077952
996 ‎‡2 J9U|987007443059305171
996 ‎‡2 BNF|16619428
996 ‎‡2 BNE|XX1039670
996 ‎‡2 NUKAT|n 2015177230
996 ‎‡2 LC|nr 97004816
996 ‎‡2 NII|DA11033056
996 ‎‡2 BNE|XX1579146
996 ‎‡2 BNE|XX1708821
996 ‎‡2 LC|no2018170081
996 ‎‡2 BNC|981058514671906706
996 ‎‡2 BNC|981058517730306706
996 ‎‡2 BNF|14426266
996 ‎‡2 BNE|XX4716402
996 ‎‡2 DNB|1157964346
996 ‎‡2 RERO|A014197391
996 ‎‡2 NTA|069151644
996 ‎‡2 LC|n 79004174
996 ‎‡2 DNB|1120957486
996 ‎‡2 SUDOC|164911804
996 ‎‡2 LC|no2006066421
996 ‎‡2 ISNI|0000000069520996
996 ‎‡2 NSK|000277254
996 ‎‡2 NKC|xx0173546
996 ‎‡2 LC|n 2004041934
996 ‎‡2 DNB|119368417X
996 ‎‡2 SUDOC|276186788
996 ‎‡2 NII|DA0714827X
996 ‎‡2 NUKAT|n 2023047895
996 ‎‡2 DNB|132223686
996 ‎‡2 DNB|1026185114
996 ‎‡2 BNE|XX4618677
996 ‎‡2 BNF|16642424
996 ‎‡2 BNF|16981241
996 ‎‡2 ISNI|0000000426301805
996 ‎‡2 BNC|981058528285406706
996 ‎‡2 BNE|XX5016748
996 ‎‡2 ISNI|000000008088327X
996 ‎‡2 LC|n 2006076460
996 ‎‡2 BNE|XX1022866
996 ‎‡2 BNE|XX1018657
996 ‎‡2 ISNI|0000000118089558
996 ‎‡2 BNC|981058526039706706
996 ‎‡2 ISNI|0000000070328176
996 ‎‡2 ISNI|0000000089896026
996 ‎‡2 LC|n 00104757
996 ‎‡2 DNB|1310548439
996 ‎‡2 ARBABN|000044096
996 ‎‡2 LC|no2017125138
996 ‎‡2 LC|no2008006721
996 ‎‡2 BNE|XX1654392
996 ‎‡2 DNB|141870079
996 ‎‡2 ISNI|0000000060381635
996 ‎‡2 ISNI|0000000059243374
996 ‎‡2 BNE|XX4610191
996 ‎‡2 LC|no2007023700
996 ‎‡2 LC|n 2008041068
996 ‎‡2 BNE|XX1739674
996 ‎‡2 BNF|13740646
996 ‎‡2 CAOONL|ncf11358089
996 ‎‡2 BNE|XX4790813
996 ‎‡2 BNC|981061121426006706
996 ‎‡2 BNF|14539654
996 ‎‡2 DNB|139781900
996 ‎‡2 ISNI|000000037838545X
996 ‎‡2 BIBSYS|5010554
996 ‎‡2 LC|no2011077242
996 ‎‡2 DNB|140153454
996 ‎‡2 DNB|1193693748
996 ‎‡2 J9U|987012196065105171
996 ‎‡2 LC|n 86832477
996 ‎‡2 BNE|XX5372065
996 ‎‡2 BNE|XX1740170
996 ‎‡2 BNE|XX1687353
996 ‎‡2 LC|no2003010376
996 ‎‡2 DNB|1057049212
996 ‎‡2 NKC|jo20191030408
996 ‎‡2 BNCHL|10000000000000000168153
996 ‎‡2 BNCHL|10000000000000000168152
996 ‎‡2 RERO|A017591071
996 ‎‡2 BNE|XX4912097
996 ‎‡2 LC|n 93023009
996 ‎‡2 BNE|XX4693292
996 ‎‡2 SUDOC|099488779
996 ‎‡2 SUDOC|194679659
996 ‎‡2 J9U|987007337069905171
996 ‎‡2 ISNI|0000000120961341
996 ‎‡2 SUDOC|136735436
996 ‎‡2 RERO|A000095824
996 ‎‡2 ISNI|0000000059938555
996 ‎‡2 RERO|A003307849
996 ‎‡2 ISNI|0000000060486269
996 ‎‡2 LC|n 95098859
996 ‎‡2 BNE|XX1078816
996 ‎‡2 BNE|XX5222321
996 ‎‡2 LC|no2021107137
996 ‎‡2 BNE|XX870847
996 ‎‡2 BNCHL|10000000000000000056422
996 ‎‡2 DNB|170962741
996 ‎‡2 DNB|173751806
996 ‎‡2 LC|n 2012024474
996 ‎‡2 CAOONL|ncf10726781
996 ‎‡2 ISNI|0000000077042357
996 ‎‡2 ISNI|0000000116972806
996 ‎‡2 ISNI|0000000047525147
996 ‎‡2 BNCHL|10000000000000000008630
996 ‎‡2 BNE|XX5405786
996 ‎‡2 DNB|142933171
996 ‎‡2 NTA|402352238
996 ‎‡2 LC|n 2008018662
996 ‎‡2 LC|no2023113312
996 ‎‡2 VLACC|000039878
996 ‎‡2 ARBABN|000028201
996 ‎‡2 BNC|981058516916706706
996 ‎‡2 BNC|981060717372006706
996 ‎‡2 RERO|A012631207
996 ‎‡2 DNB|139367845
996 ‎‡2 CAOONL|ncf11532426
996 ‎‡2 RERO|A013706165
996 ‎‡2 BNE|XX1473740
996 ‎‡2 BNCHL|10000000000000000204849
996 ‎‡2 BNCHL|10000000000000000142467
996 ‎‡2 BNE|XX1198676
996 ‎‡2 BNCHL|10000000000000000142463
996 ‎‡2 PTBNP|454107
996 ‎‡2 RERO|A011900185
996 ‎‡2 NTA|398184585
996 ‎‡2 BNE|XX4697261
996 ‎‡2 BNC|981058511260906706
996 ‎‡2 BNE|XX5565548
996 ‎‡2 BNE|XX5048074
996 ‎‡2 ISNI|0000000033633868
996 ‎‡2 BNC|981058601803106706
996 ‎‡2 BNE|XX1587903
996 ‎‡2 SUDOC|080878458
996 ‎‡2 BNE|XX1260019
996 ‎‡2 BNE|XX1078320
996 ‎‡2 ISNI|0000000387692689
996 ‎‡2 BNF|14494382
996 ‎‡2 PTBNP|209745
996 ‎‡2 JPG|500294294
996 ‎‡2 NSK|000693050
996 ‎‡2 DNB|1056382465
996 ‎‡2 BNE|XX1307480
996 ‎‡2 SUDOC|196499151
996 ‎‡2 DNB|1056739223
996 ‎‡2 DNB|1193687551
996 ‎‡2 BNE|XX935575
996 ‎‡2 DNB|1056229616
996 ‎‡2 BNE|XX1094360
996 ‎‡2 ISNI|0000000381252375
996 ‎‡2 LC|ns2014001871
996 ‎‡2 LC|n 82025667
996 ‎‡2 SUDOC|203648390
996 ‎‡2 BNC|981058528556506706
996 ‎‡2 ARBABN|000044100
996 ‎‡2 ARBABN|000044103
996 ‎‡2 LC|no 96034115
996 ‎‡2 DNB|1193692199
996 ‎‡2 BNCHL|10000000000000000151147
996 ‎‡2 BIBSYS|9002217
996 ‎‡2 BNE|XX1068021
996 ‎‡2 LC|n 78042535
996 ‎‡2 BNE|XX962840
996 ‎‡2 BIBSYS|13045657
996 ‎‡2 LC|n 2011030657
996 ‎‡2 DNB|1293410608
996 ‎‡2 BNE|XX1454987
996 ‎‡2 LC|n 78045476
996 ‎‡2 DNB|1056253657
996 ‎‡2 NTA|307938298
996 ‎‡2 LC|ns2021001081
996 ‎‡2 BNC|981058518221306706
996 ‎‡2 LC|n 82247911
996 ‎‡2 DNB|121330976X
996 ‎‡2 BNE|XX5703291
996 ‎‡2 LC|no2010201890
996 ‎‡2 SUDOC|074068571
996 ‎‡2 NUKAT|n 2018082927
996 ‎‡2 ISNI|000000044916476X
996 ‎‡2 ISNI|0000000374029837
996 ‎‡2 SUDOC|132318423
996 ‎‡2 DNB|1334904812
996 ‎‡2 LC|ns2012002578
996 ‎‡2 SUDOC|254423019
996 ‎‡2 BNE|XX925601
996 ‎‡2 ISNI|0000000060601538
996 ‎‡2 BNE|XX1668507
996 ‎‡2 BNE|XX1095102
996 ‎‡2 DBC|87097969669026
996 ‎‡2 LC|no2009189181
996 ‎‡2 NUKAT|n 2017024826
996 ‎‡2 LC|n 2006011707
996 ‎‡2 BIBSYS|6065412
996 ‎‡2 PLWABN|9811478748605606
996 ‎‡2 LC|no2008005369
996 ‎‡2 LC|no2012107377
996 ‎‡2 BNE|XX1104806
996 ‎‡2 ISNI|000000038384055X
996 ‎‡2 BNE|XX5042243
996 ‎‡2 DNB|133106446
996 ‎‡2 DNB|101319490X
996 ‎‡2 BNE|XX5433721
996 ‎‡2 ISNI|0000000030328948
996 ‎‡2 LC|n 96902054
996 ‎‡2 BNC|981058517804006706
996 ‎‡2 NTA|161946666
996 ‎‡2 DNB|1057323772
996 ‎‡2 DNB|1056273674
996 ‎‡2 LC|no2021128295
996 ‎‡2 DNB|132011956
996 ‎‡2 BNE|XX5686690
996 ‎‡2 LC|n 95063792
996 ‎‡2 LC|n 99801974
996 ‎‡2 DNB|1037106318
996 ‎‡2 PTBNP|1726143
996 ‎‡2 BNE|XX5416288
996 ‎‡2 LC|no2009000579
996 ‎‡2 BNE|XX5606924
996 ‎‡2 ISNI|0000000078785996
996 ‎‡2 BNE|XX1221741
996 ‎‡2 SUDOC|077460103
996 ‎‡2 J9U|987012503147805171
996 ‎‡2 ISNI|0000000082687934
996 ‎‡2 SUDOC|05029797X
997 ‎‡a 0 0 lived 0 0‏ ‎‡9 1‏
998 ‎‡a Romano Rodríguez, Alberto‏ ‎‡2 BNE|XX925601‏ ‎‡3 suggested‏
998 ‎‡a Romano Rodríguez, Albert‏ ‎‡2 BNC|981058516447906706‏ ‎‡3 standard number‏