Random Forest 原理与代码实战案例讲解
1. 背景介绍
1.1 机器学习中的分类与回归问题
在机器学习领域中,分类和回归问题是两大核心任务。分类问题旨在根据输入数据的特征对其进行分类,将其归入有限的几个类别中。而回归问题则是预测一个连续的数值输出。
1.2 决策树算法及其局限性
决策树是一种流行的机器学习算法,可用于解决分类和回归问题。它通过学习训练数据构建一个决策树模型,并基于特征对实例进行递归分区,最终将实例归入叶节点的类别或产生一个数值预测。
然而,单一决策树存在过拟合的风险,其泛化能力有限。为了提高模型的性能和稳健性,集成学习方法应运而生,其中随机森林(Random Forest)就是一种非常成功的集成算法。
2. 核心概念与联系
2.1 集成学习的概念
集成学习(Ensemble Learning)是将多个基础模型组合起来,形成一个更强大的模型的过程。其核心思想是通过构建并结合多个学习器来完成预测任务,从而获得比单一学习器更有效和更准确的预测结果。
2.2 随机森林算法概述
随机森林(Random Forest)是一种基于决策树的集成学习算法。它通过构建多个决策树,并将它们的预测结果进行组合,从而获得更加准确和稳健的模型。每棵决策树在构建过程中都会引入随机性,使得每棵树的差异性增大,这有