一文彻底搞懂深度学习:Transformer架构

Transformer是一种基于自注意力(Self-Attention)机制的深度学习模型,最初由Vaswani等人在2017年的论文《Attention Is All You Need》中提出。它完全基于注意力机制构建,摒弃了传统的循环和卷积结构,用于解决自然语言处理领域的任务,如机器翻译、文本生成等。

一、Transformer的本质

1、什么是Transformer?

Transformer模型是一种强大的深度学习架构,它利用自注意力机制和多头注意力来捕捉序列内部的依赖关系,并通过位置编码来引入位置信息。

2、Transformer的本质是什么?

Transformer的本质是一个基于自注意力机制的编码器-解码器架构,它能够有效地处理序列到序列的任务,并捕捉输入序列中的长距离依赖关系。Transformer左边是N个编码器,右边是N个解码器,其中N为6。

二、Transformer的架构

1、Transformer的架构是什么?

Transformer遵循编码器-解码器总体架构,使用堆叠的自注意力机制和全连接层,分别用于编码器和解码器,如图中的左半部分和右半部分所示。

2、自注意力(Self- Attention)机制是什么?

自注意力机制用于计算输入序列中各个元素之间的相关性,并据此更新每个元素的表示。与传统的注意力机制不同,自注意力机制不需要外部信息或额外的查询(Query)来引导注意力的分配,而是仅依赖于输入序列本身。

在自注意力机制中,输入序列首先被转换为三个不同的表示:查询(Query)、键(Key)和值(Value)。这些表示通常是通过将输入序列与相应的权重矩阵相乘得到的。然后,计算查询与每个键之间的点积,得到注意力分数,这些分数反映了查询与每个键之间的相关性。

3、Transformer注意力机制有哪些?

Transformer模型中注意力机制有三个主要用途。Encoder中的Self-Attention用于捕捉输入序列内部各元素之间的关系,Decoder中的Self-Attention用于生成目标序列时考虑已生成的部分,而Decoder中的Encoder-Decoder-Attention则用于将输入序列的信息融入到目标序列的生成过程中。

4、Transformer的核心组件有哪些?

Transformer模型包含输入嵌入、位置编码、多头注意力、残差连接和层归一化、带掩码的多头注意力以及前馈网络等组件。

  • 输入嵌入: 将输入的文本转换为向量,便于模型处理。

  • 位置编码: 给输入向量添加位置信息,因为Transformer并行处理数据而不依赖顺序。

  • 多头注意力: 让模型同时关注输入序列的不同部分,捕获复杂的依赖关系。

  • 残差连接与层归一化: 通过添加跨层连接和标准化输出,帮助模型更好地训练,防止梯度问题。

  • 带掩码的多头注意力: 在生成文本时,确保模型只依赖已知的信息,而不是未来的内容。

  • 对输入进行非线性变换,提取更高级别的特征。

最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值