OpenCV-Python实战(17)——人脸识别详解

本文详细介绍了如何使用OpenCV进行人脸识别,包括Eigenfaces、Fisherfaces和LBPH三种方法,并探讨了dlib和face_recognition库在人脸识别中的应用。通过实例展示了人脸识别的流程,适合计算机视觉和人工智能爱好者学习。
摘要由CSDN通过智能技术生成

0. 前言

人脸处理是人工智能中的一个热门话题,人脸处理可以使用计算机视觉算法从人脸中自动提取大量信息,例如身份、意图和情感。随着计算机视觉、机器学习和深度学习的发展,人脸识别已经成为一个热门话题。在本文中,我们介绍 OpenCV 提供的与人脸识别相关的函数,同时还将探索一些用于人脸识别的深度学习方法,这些方法可以轻松集成到计算机视觉项目中以实现高精度的人脸识别。

1. 人脸识别简介

人脸识别具有广泛的应用前景,包括犯罪预防、智能监视以及社交网络。但自动人脸识别同样面临多种挑战,例如遮挡、装束变化、表情、年龄老化等。继在对象识别方面取得成功之后,CNN 已被广泛用于人脸识别。

2. 使用 OpenCV 进行人脸识别

OpenCV 提供了三种不同的实现来执行人脸识别

  • Eigenfaces
  • Fisherfaces
  • Local Binary Patterns Histograms (LBPH)

这些实现以不同的方式执行人脸识别。但是,

评论 179
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值