使用 LlamaIndex 从 PDF 文档构建知识图谱 RAG

之前,我从 PDF 文档中实现了 RAG LLM 。检索增强生成 (RAG) 的概念是向大型语言模型 (LLM) 提供来自外部知识源(如 PDF 文档、CSV 文件等)的补充信息。这使它们能够生成更准确、更符合上下文的响应。但是,RAG 难以处理广泛的异构信息。RAG 利用向量数据库,该数据库基于不同实体(如单词或短语)的高维向量表示来测量它们之间的相似性或相关性。它忽略了实体的结构和关系。例如,在向量表示中,“员工”一词可能比“信息”与“雇主”更相关,因为它在向量空间中看起来更接近。

这可以通过引入知识图谱来实现,知识图谱是一种将数据组织为节点和边的数据结构,可增强检索信息的语境性。知识图谱由主语-谓语-宾语三元组组成,其中主语/宾语由节点表示,谓语/关系由边表示。例如,在这个三元组“雇主 — 提交 — 索赔”中,“提交”是谓语,表示“雇主”和“索赔”之间的关系。通过三元组表示,知识图谱数据库可以使复杂的数据搜索更加准确和高效。

执行

安装依赖项

!pip 安装 -q pypdf   
!pip 安装 -q python-dotenv   
!pip 安装 -q pyvis   
!pip 安装 -q transformers einops 加速 langchain bitsandbytes sentence\_transformers langchain-community langchain-core   
!pip 安装 -q llama-index   
!pip 安装 -q llama-index-llms-huggingface   
!pip 安装 -q llama-index-embeddings-langchain   
!pip 安装 -q llama-index-embeddings-huggingface
  • LlamaIndex_:_一个简单、灵活的数据框架,用于将自定义数据源连接到 LLM

  • SimpleDirectoryReader_:_将数据从本地文件加载到 LlamaIndex 的最简单方法

  • KnowledgeGraphIndex_:_从非结构化文本自动构建知识图谱

  • SimpleGraphStore_:_简单图形存储索引

  • PyVis_:_一个用于可视化和构建图形网络的 Python 库

启用诊断日志记录

日志记录为代码执行提供了有价值的见解。

导入操作系统、日志记录、系统日志  
  
记录.basicConfig(流=sys.stdout,级别=logging.INFO)  
日志记录.getLogger()。addHandler(日志记录.StreamHandler(流=sys.stdout))

连接 Huggingface API

使用您的 Huggingface 推理 API 端点进行更新

从huggingface\_hub导入登录  
  
os.environ\[ "HF\_KEY" \] = "您的 Hugging Face 访问令牌在此处"  
 login(token=os.environ.get( 'HF\_KEY' ),add\_to\_git\_credential= True )

加载 PDF 文档

  • 创新不列颠哥伦比亚省创新者技能计划

  • 卑诗省艺术委员会申请协助

从llama\_index.core导入SimpleDirectoryReader  
  
文档 = SimpleDirectoryReader(input\_dir= "/content/" , required\_exts= ".pdf" ).load\_data()

构建知识图谱索引

使用 HuggingFace 创建本地嵌入

HuggingFaceEmbeddings 是 LangChain 库中的一个类,它为 Hugging Face 的句子转换器模型提供了一个包装器,用于生成文本嵌入。它允许您使用 Hugging Face 上的任何句子嵌入模型来执行语义搜索、文档聚类和问答等任务。multi-qa-MiniLM-L6-cos-v1本练习使用 HF 句子转换器模型。

从llama\_index.embeddings.huggingface导入HuggingFaceEmbedding   
  
EMBEDDING\_MODEL\_NAME = “sentence-transformers/multi-qa-MiniLM-L6-cos-v1”  
  
 embed\_model = HuggingFaceEmbedding(model\_name=EMBEDDING\_MODEL\_NAME,embed\_batch\_size= 10 )

从 ServiceContext 迁移到 Settings

LlamaIndex v0.10.0 中引入了一个新的全局 Settings 对象,旨在取代旧的 ServiceContext 配置。

新的 Settings 对象是一个全局设置,其参数是延迟实例化的。LLM 或嵌入模型等属性仅在底层模块实际需要时才会加载。

从llama\_index.core导入设置  
  
Settings.embed\_model = embed\_model   
Settings.chunk\_size = 256  
 Settings.chunk\_overlap = 50

当文档被录入索引时,它们会被分割成具有一定重叠度的块。这称为“分块”。默认块大小为 1024,而默认块重叠度为 20。我们将块大小设置为 256,重叠度为 50,因为我们的文档长度较短。更多分块策略可在此处找到。

定义自定义提示

从llama\_index.core导入PromptTemplate   
  
system\_prompt = """<|SYSTEM|># 您是人工智能管理助理。  
您的目标是仅使用提供的上下文准确回答问题。  
"""   
  
\# 这将包装 llama-index 内部的默认提示  
query\_wrapper\_prompt = PromptTemplate( "<|USER|>{query\_str><|ASSISTANT|>" )   
  
LLM\_MODEL\_NAME = "meta-llama/Llama-2-7b-chat-hf"

设置法学硕士 (LLM)

导入torch  
从llama\_index.llms.huggingface导入HuggingFaceLLM   
  
llm = HuggingFaceLLM(   
    context\_window= 4096 ,   
    max\_new\_tokens= 512 ,   
    generate\_kwargs={ "temperature" : 0.1 , "do\_sample" : False },   
    system\_prompt=system\_prompt,   
    query\_wrapper\_prompt=query\_wrapper\_prompt,   
    tokenizer\_name=LLM\_MODEL\_NAME,   
    model\_name=LLM\_MODEL\_NAME,   
    device\_map= "auto" ,   
    \# 如果使用 CUDA 则取消注释此行以减少内存使用  
    model\_kwargs={ "torch\_dtype" : torch.float16 , "load\_in\_8bit" : True }   
)   
  
Settings.llm = llm

构建知识图谱索引

从llama\_index.core.storage.storage\_context导入StorageContext  
从llama\_index.core导入SimpleDirectoryReader、KnowledgeGraphIndex  
从llama\_index.core.graph\_stores导入SimpleGraphStore   
  
#设置存储上下文  
graph\_store = SimpleGraphStore()   
storage\_context = StorageContext.from\_defaults(graph\_store=graph\_store)   
  
index = KnowledgeGraphIndex.from\_documents(documents=documents,   
                                           max\_triplets\_per\_chunk= 3 ,   
                                           storage\_context=storage\_context,   
                                           embed\_model=embed\_model,   
                                          include\_embeddings= True )
  • _max_triplets_per_chunk :_从文本的每个块中提取的三元组的最大数量。减少此数字可以加快处理速度,因为需要处理的三元组更少。

  • _include_embeddings :_控制是否在索引中包含嵌入。默认值为 False,因为生成嵌入可能需要大量计算。

可视化知识图谱

从pyvis.network导入Network   
g = index.get\_networkx\_graph()   
net = Network(notebook= True , cdn\_resources= "in\_line" , directed= True )   
net.from\_nx(g)   
net.save\_graph( "rag\_graph.html" )  
从IPython.display导入HTML,显示  
HTML(filename= "rag\_graph.html" )

询问

query\_engine = index.as\_query\_engine(llm=llm, similarity\_top\_k=5)  
  
done = False  
但未完成:  
 print(“\*” \*30)  
question = input(“输入您的问题:”)  
response = query\_engine.query(question)print   
 ( response)  
 done = input(“结束聊天?(y/n):”)== “y”

概括

传统的基于向量的 RAG 和 Graph RAG 在存储和显示数据的方式上有所不同。向量数据库适合基于相似性比较事物。它们使用数字来衡量事物之间的距离。另一方面,知识图谱用于显示复杂的连接以及事物之间的相互依赖关系。它们使用节点和边进行语义分析和高级推理。每个都有自己的用例。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

构建一个RAG(Retrieval-Augmented Generation,检索增强生成)模型通常涉及两部分:检索模型用于从大量文本数据中查找相关信息,生成模型则基于这些信息生成新的内容。以下是基本步骤: 1. **数据准备**:首先,你需要收集并预处理大量的文本数据,如维基百科或其他相关领域的知识库。 2. **训练检索模型**:使用像 DPR ( Dense Passage Retrieval) 这样的模型,它是一个双向Transformer架构,对查询和文本片段进行匹配度评分。训练时需要将查询与其相关的文档片段配对作为输入,通过负采样等技术学习相似度计算。 3. **训练生成模型**:可以选择一种强大的语言模型,比如 GPT、T5 或 BART,对其进行训练。这部分通常是基于编码查询和检索到的相关片段来指导生成过程。 4. **整合模型**:将检索模型和生成模型集成在一起。当接收到一个新的查询时,先用检索模型找到最相关的文档片段,然后将这些片段的内容传递给生成模型,让它在此基础上生成响应。 5. **加载模型**:在完成训练后,你可以使用框架如 Hugging Face Transformers 的 `load_model_from_pretrained` 函数来加载预训练好的 RAG 模型。例如,如果你使用的是 PyTorch,可以这样做: ```python from transformers import RagModel, RagTokenizer tokenizer = RagTokenizer.from_pretrained('your_model_name') rag_model = RagModel.from_pretrained('your_model_name', use_fusion=True) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值