自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2874)
  • 资源 (10)
  • 收藏
  • 关注

原创 【免费源码】基于YOLOv10的火焰烟雾实时检测系统【yolo火焰烟雾数据集+ui界面+模型】

6744张图像在构建用于火焰烟雾检测的深度学习模型时,一个全面和精确标注的数据集是至关重要的。我们的数据集共包含6744张图像,其中包括4832张训练图像1000张验证图像,以及912张测试图像。这样的划分旨在确保模型能在充足的数据上进行训练,同时留出足够的样本来验证和测试模型的性能。在数据预处理阶段,我们采取了几项关键步骤以确保数据集的质量。首先,所有图像都经过了自动方向校正,并剥离了EXIF方向信息,这是为了消除因摄影设备的不同拍摄角度而带来的方向差异。

2024-11-02 21:33:39 811

原创 yolov10环境配置

首先新建一个Anaconda环境,每个项目用不同的环境,这样项目中所用的依赖包互不干扰。

2024-10-16 22:49:28 602

原创 YOLOv5/v8车牌识别系统,QT可视化界面,可更换模型,更换.pt文件可以可视化其他深度学习项目,详细环境搭建+视频展示

yolov5/yolov8车牌识别2.0可视化QT界面runs文件夹中,存放训练和评估的结果图。

2024-05-07 16:03:40 2856 40

原创 2024年 毕业设计 机器学习&深度学习实战案例,含有python代码和教程 (10月26日已更新856篇)

10月促销价39.9,适合初学python机器学习深度学习的学生,从入门到精通,专栏内含有讲解,每篇文章都含有对应的代码,会持续更新,更新至千篇案例,已经更新六百多个项。

2023-10-05 16:16:42 6904 12

原创 基于YOLOv10深度学习的红细胞、白细胞和血小板检测系统【免费源码】【yolo红细胞、白细胞和血小板数据集+ui界面+模型+实时检测】

血细胞检测是临床医学中一项重要的基础诊断手段,对疾病筛查、健康评估以及疾病进程的监测具有重要意义。传统血细胞检测依赖人工显微镜观察或自动化血液分析仪,前者耗时且依赖经验,后者成本较高且对设备要求严格。因此,开发一种高效、精准、低成本的血细胞检测系统成为研究热点。随着深度学习技术的快速发展,目标检测算法在医学图像分析领域展现了强大的潜力和应用前景。YOLO(You Only Look Once)作为一种高效的目标检测算法,以其实时性和高精度在众多场景中得到了广泛应用。

2024-11-17 00:45:56 514

原创 基于YOLOv10深度学习的条形码检测系统【免费源码】【yolo条形码数据集+ui界面+模型+实时检测】

随着电子商务和自动化技术的迅猛发展,条形码作为商品标识和信息传递的重要手段,在现代社会中得到了广泛应用。无论是在零售、物流、仓储还是生产等领域,条形码的自动识别技术都发挥着至关重要的作用。条形码的快速准确识别不仅提高了工作效率,也减少了人工错误和操作成本。因此,开发一种高效、精确且易于操作的条形码检测系统具有重要的实际应用价值。近年来,深度学习在计算机视觉领域取得了显著的进展,尤其是基于卷积神经网络(CNN)的目标检测算法,逐渐成为图像识别中的主流技术。

2024-11-17 00:30:26 377

原创 基于YOLOv10深度学习的3D打印缺陷检测系统【免费源码】【yolo3D打印缺陷数据集+ui界面+模型+实时检测】

随着3D打印技术的迅速发展,越来越多的行业开始应用该技术来进行原型设计、生产制造以及定制化生产。3D打印的优势在于其能够灵活地制造复杂的结构,并减少传统制造工艺中的材料浪费。然而,3D打印的质量控制仍然是一个挑战,尤其是在打印过程中可能出现各种缺陷,如意大利面缺陷(Spaghetti)、小疙瘩(Zits)、拉丝(Stringing)等。这些缺陷不仅影响打印物体的外观,还可能影响其功能性和强度,严重时甚至可能导致产品报废,增加生产成本。

2024-11-17 00:17:00 819

原创 基于YOLOv10深度学习的水下鱼类检测系统【免费源码】【yolo鱼类数据集+ui界面+模型+实时检测】

随着水下生态环境的逐渐恶化,水下生物监测成为环境保护和渔业管理中的重要任务。鱼类作为水下生态系统的重要组成部分,其数量、种类和分布的监测,对于评估生态系统健康状况及制定科学的保护措施具有重要意义。传统的水下鱼类检测方法多依赖人工观测或使用水下摄像设备进行图像处理,这些方法不仅费时费力,而且对环境要求较高,且容易受到人为误差和环境干扰的影响。近年来,深度学习技术,尤其是基于卷积神经网络(CNN)的目标检测算法,已经成为图像处理和物体识别领域的前沿技术。

2024-11-16 23:44:56 460

原创 基于YOLOv10深度学习的船舶识别检测系统【免费源码】【yolo船舶数据集+ui界面+模型+实时检测+10种类别】

随着全球航运业的快速发展,海洋交通安全和船舶管理的需求日益增加。传统的船舶监测方式主要依赖人工巡查、雷达系统和静态数据分析,效率低、准确性差,且难以满足实时、高效的监控需求。为了提升船舶识别的精确度和响应速度,深度学习技术,特别是目标检测模型,已成为当前解决这一问题的重要手段。YOLO(You Only Look Once)系列模型在图像处理领域取得了显著成果,尤其在实时目标检测方面展现了强大的能力。

2024-11-16 22:46:04 830

原创 基于YOLOv10深度学习的设备泄漏检测系统【免费源码】【yolo设备泄漏数据集+ui界面+模型+实时检测】

设备泄漏是工业生产中常见且严重的问题,可能导致资源浪费、环境污染,甚至安全事故。传统的泄漏检测方法通常依赖于人工检查或简单的传感器监测,这些方法在效率、精度和实时性方面存在明显不足。随着深度学习和计算机视觉技术的飞速发展,基于目标检测的自动化泄漏检测系统逐渐成为解决这一问题的有效途径。YOLO(You Only Look Once)作为一种高效的目标检测算法,以其速度快、精度高、实时性强的特点广泛应用于各类视觉任务。

2024-11-16 22:04:52 570

原创 基于YOLOv10深度学习的石油泄漏检测系统【免费源码】【yolo石油泄漏数据集+ui界面+模型+实时检测】

石油作为一种重要的能源资源,其开采、运输和存储过程中的泄漏问题,不仅会对生态环境造成严重破坏,还可能引发火灾、爆炸等安全隐患。传统的石油泄漏检测手段依赖于人工巡检和监测设备,这种方式不仅成本高、效率低,而且在复杂环境下难以及时发现问题。随着深度学习技术的快速发展,目标检测算法在工业监测中的应用成为可能。YOLO(You Only Look Once)作为一种高效的目标检测算法,以其实时性和准确性受到广泛关注。

2024-11-16 21:45:24 510

原创 基于YOLOv10深度学习的数字识别系统【免费源码】【yolo数字1-10数据集+ui界面+模型+实时检测】

随着深度学习技术的快速发展,目标检测领域取得了显著进展。YOLO(You Only Look Once)系列模型以其高效的检测性能和实时性广泛应用于各种场景,如自动驾驶、视频监控和智能设备。针对特定任务,如数字识别,其需求同样日益增长,特别是在工业质量检测、文档数字提取、车牌识别等领域。本项目基于最新的YOLOv10模型,设计并实现了一套完整的数字识别系统。该系统以1至10的数字为识别对象,结合精心设计的数据集和训练策略,在保证高检测精度的同时实现了实时检测能力。

2024-11-16 21:22:18 472

原创 基于YOLOv10深度学习的手机检测系统【免费源码】【yolo手机数据集+ui界面+模型+实时检测】

基于YOLOv10深度学习的手机检测系统利用YOLOv10模型进行实时目标检测,能够高效、精准地识别和定位图像中的手机。系统使用经过标注的手机数据集,确保模型具有较强的泛化能力,并通过简洁的UI界面实现图像和视频的实时检测功能。该系统能够在不同条件下进行手机检测,并实时显示检测结果,包括目标的位置和类别信息。项目提供完整的开源代码和数据集,支持开发者进行二次开发,广泛应用于手机自动检测、物品追踪及安防监控等领域。3500张图像在构建用于手机检测的深度学习模型时,一个全面和精确标注的数据集是至关重要的。

2024-11-16 18:11:12 677

原创 基于YOLOv10深度学习的车辆类型检测系统【免费源码】【yolo车辆类型数据集+ui界面+模型+实时检测+7种车辆类型+准确率高达99.1%】

随着智能交通系统(ITS)的发展,车辆类型识别作为交通监控与管理的关键技术之一,得到了广泛应用。传统的车辆类型检测方法通常依赖于人工标注和规则算法,然而,随着交通流量的增加和车辆种类的多样化,这些方法的效率和准确性逐渐面临挑战。因此,基于深度学习的目标检测技术成为了车辆类型分类检测领域的主流解决方案。YOLO(You Only Look Once)作为一种高效的实时目标检测算法,在计算机视觉领域取得了显著的成功。

2024-11-16 17:53:21 549

原创 基于YOLOv10深度学习的无人机检测系统【免费源码】【yolo无人机数据集+ui界面+模型+实时检测】

近年来,无人机技术的快速发展为物流运输、农业监测、灾害救援等领域带来了重要变革,但也引发了诸如隐私安全、非法入侵等问题。如何快速、准确地检测无人机成为一个亟待解决的技术难题。深度学习技术,尤其是基于YOLO(You Only Look Once)框架的目标检测算法,以其高效的实时性能和优异的检测精度,成为解决此问题的理想选择。本项目基于最新的YOLOv10算法,针对无人机目标检测需求,构建了一套完整的检测系统。

2024-11-16 17:03:46 874

原创 基于YOLOv10深度学习的奶牛安全检测系统【免费源码】【yolo奶牛行为数据集+ui界面+模型+实时检测+站立行走卧倒检测】

随着现代畜牧业的快速发展,对奶牛的健康管理与行为监测提出了更高的要求。奶牛行为的异常往往是疾病、压力或外界环境变化的早期信号,及时监测并分析奶牛行为可有效降低疾病传播风险,提升奶牛产奶量,优化牧场管理效率。然而,传统的人工监测方法耗时费力且准确性有限,已难以满足规模化牧场管理的需求。近年来,深度学习技术在目标检测领域取得了显著成果,尤其是以YOLO(You Only Look Once)为代表的实时目标检测算法,因其高效性与准确性在视频监控场景中表现优异。

2024-11-16 16:11:05 696

原创 基于YOLOv10深度学习的过敏原食品检测系统【免费源码】【yolo过敏食物数据集+ui界面+模型+实时检测+30种食物】

随着食品种类的丰富和人们饮食需求的多样化,食物过敏已成为全球范围内广受关注的健康问题。由于过敏原可能隐藏在看似普通的食物中,快速准确地检测和识别潜在的过敏原食品对于过敏患者的健康管理至关重要。传统的过敏原检测方法依赖于化学分析或人工判断,既费时费力,又容易出现误判。近年来,深度学习技术在计算机视觉领域的快速发展为食品检测领域提供了新的解决方案。YOLO(You Only Look Once)系列算法因其高效的目标检测性能和实时性备受瞩目。

2024-11-16 15:27:54 601

原创 基于YOLOv10深度学习的树上自然生长的苹果检测系统【免费源码】【yolo苹果数据集+ui界面+模型+摄像头实时检测】

随着科技的不断进步,深度学习和计算机视觉技术在农业领域的应用逐渐成为提升生产效率和减少人工成本的重要手段。尤其是在水果采摘过程中,如何快速、准确地识别树上自然生长的水果,已成为智能农业研究的一个重要课题。苹果作为一种广泛栽培的水果,具有较高的经济价值,传统的人工采摘方式不仅效率低,而且容易出现果实损伤、错采等问题。因此,开发一种基于深度学习的智能检测系统,可以有效解决这一问题,提升采摘过程的自动化和智能化水平。

2024-11-16 14:39:10 742

原创 基于YOLOv10深度学习的苹果腐烂检测系统【免费源码】【yolo苹果腐烂数据集+ui界面+模型+摄像头实时检测】

随着科技的进步,深度学习技术在各个领域的应用得到了广泛关注和迅速发展,尤其是在图像识别领域。水果的品质检测,作为农业生产中的重要环节,传统的人工检查方法不仅费时费力,还容易受到人为因素的影响,难以实现大规模、高效的质量控制。苹果作为全球重要的水果之一,其腐烂问题直接影响着果品的市场价值和消费者的健康安全。因此,开发一种高效、智能的苹果腐烂检测系统具有重要的实践意义。

2024-11-16 14:01:36 504

原创 基于YOLOv10深度学习的苹果新鲜度检测系统【免费源码】【yolo苹果腐烂数据集+ui界面+模型+摄像头实时检测】

yolo苹果腐烂检测。随着现代农业向智能化、精细化方向发展,水果质量的自动检测技术成为保障果品供应链效率的重要手段。苹果作为世界范围内广泛种植的水果,其新鲜度和腐烂状态的快速判断对仓储、运输及销售环节至关重要。然而,传统的人工分拣方法效率低下、误判率高,难以满足现代农业生产的需求。因此,利用深度学习技术实现苹果新鲜和腐烂状态的自动检测,具有重要的研究意义与应用价值。近年来,深度学习目标检测算法在图像分析领域表现出强大的特征提取能力和高效的检测性能,YOLO系列模型更以其实时性和高准确率广受关注。

2024-11-16 12:00:32 644

原创 基于YOLOv10深度学习的冰箱内食物检测系统【免费源码】【yolo食物数据集+ui界面+模型+实时检测+30种食物】

随着人工智能技术的快速发展,深度学习在计算机视觉领域的应用取得了显著的进展,尤其是在物体检测和分类任务中。YOLO(You Only Look Once)作为一种高效的实时目标检测算法,已经被广泛应用于多个行业领域,如安防监控、自动驾驶、医疗影像分析等。随着智能家居和自动化技术的兴起,基于视觉的食品识别技术也逐渐成为智能厨房和食品管理系统中的重要组成部分。本项目基于YOLOv10深度学习算法,开发了一种冰箱内食物检测系统。该系统能够实时识别和定位冰箱内的30种常见食物(),提供了高效的食物管理和监控方案。

2024-11-15 23:51:14 547

原创 基于YOLOv10深度学习的生菜生长周期检测系统【免费源码】【yolo生菜正常周期据集+ui界面+模型+实时检测+五个周期(成熟可收割, 空壳期, 发芽阶段, 结荚期, 幼苗阶段)】

随着现代农业技术的不断发展,智能化与自动化技术已成为提高农业生产效率和减少人工干预的重要手段。生菜作为一种广泛种植的蔬菜,其生长周期的精确监控对于优化种植管理、提高产量和质量具有重要意义。传统的生长周期监测方法通常依赖人工观察,效率低且容易受到人为因素的影响,难以实现实时、精准的监控。近年来,深度学习技术,特别是基于卷积神经网络(CNN)的目标检测算法,已在农业领域的智能监控和物体识别中取得显著进展。

2024-11-15 23:22:28 661

原创 基于YOLOv10深度学习的大豆检测系统【免费源码】【yolo大豆数据集+ui界面+模型+实时检测】

随着人工智能技术的飞速发展,计算机视觉在农业领域的应用逐渐成为研究热点。目标检测作为计算机视觉的重要分支,可以帮助农业从业者实现对作物生长、病害监测和收获管理的智能化管理。其中,大豆作为全球重要的粮食和油料作物,其生长监测与精准管理对保障粮食安全具有重要意义。然而,传统的人工监测方式效率低下且容易受到人为因素干扰,亟需一种高效、智能的解决方案。YOLO(You Only Look Once)系列算法因其高速性与高准确率,已广泛应用于农业目标检测任务。

2024-11-15 22:24:12 586

原创 基于YOLOv10深度学习的家禽鸡检测系统【免费源码】【yolo鸡数据集+ui界面+模型+实时检测】

随着人工智能技术的飞速发展,深度学习在目标检测领域展现出了巨大的潜力和应用价值。在现代农业生产中,家禽养殖逐渐向智能化、规模化方向发展,对自动化监测和管理技术的需求日益迫切。传统的家禽检测与统计方法多依赖人工操作,不仅效率低下,而且易受主观因素影响,难以满足大规模养殖场对实时监控和精确统计的需求。近年来,YOLO(You Only Look Once)系列算法因其高效性和精确性,在目标检测领域广受关注。

2024-11-15 21:44:26 862

原创 基于YOLOv10深度学习的花生种子霉变检测系统【免费源码】【yolo花生种子霉变检测数据集+ui界面+模型+实时检测】

花生种子是重要的农作物种子之一,其品质直接影响着农业生产的产量和质量。然而,在储存和运输过程中,花生种子容易因潮湿、霉菌侵染等问题导致霉变。霉变不仅降低种子的发芽率,还可能对食品安全和农业生产造成威胁。因此,如何快速、准确地检测花生种子霉变成为了农产品质量控制中的关键问题。传统的花生种子霉变检测方法主要依赖人工观察,这种方法存在效率低、准确率不稳定、成本高等缺点,难以满足现代农业对大规模种子检测的需求。随着人工智能和计算机视觉技术的快速发展,基于深度学习的目标检测方法为霉变检测提供了全新的解决方案。

2024-11-15 21:14:37 926

原创 2024年第十届数维杯数学建模竞赛 问题D:城市韧性和可持续发展能力的评估 问题三 详细思路和代码 最新的chatgpt思路和代码

问 题 ( 3) : 利 用 附 录 3和 4中 的 数 据 , 评 估 两 个 城 市 应 对 极 端天 气 和 紧 急 情 况 的 能 力 , 并 定 量 评 估 城 市 的 可 持 续 发 展 能 力 。你 的 模 型 应 明 确 指 出 两 个 城 市 的 具 体 弱 点 , 未 来 需 要 发 展 的 关键 领 域 , 以 及 考 虑 到 有 限 财 政 资 源 的 约 束 , 城 市 的 短 期 和 长 期投 资 计 划 。

2024-11-15 11:58:03 150

原创 2024年第十届数维杯数学建模竞赛 问题D:城市韧性和可持续发展能力的评估 问题二 详细思路和代码 最新的chatgpt思路和代码

问 题 ( 2) : 请 对 城 市 1和 城 市 2不 同 领 域 的 服 务 水 平 进 行 定 量 分 析 , 并 提 取 这 两 个 城 市 的 共 同 和 独 特 特 征 , 以 及 它 们 各 自 的 优 势 和 劣 势。问题2要求对城市1和城市2不同领域的服务水平进行定量分析,并提取这两个城市的共同和独特特征,以及它们各自的优势和劣势。这是一个涉及多维度评估的分析问题,目的是通过对城市服务水平的定量评估,找到它们的相似性、差异性以及相对优势与不足。

2024-11-15 11:55:52 258

原创 2024年第十届数维杯数学建模竞赛 问题D:城市韧性和可持续发展能力的评估 问题一 详细思路和代码 最新的chatgpt思路和代码

特征工程:从原始数据中提取有用特征,进行标准化和构造新的特征。XGBoost:利用XGBoost模型进行房价预测,处理复杂的非线性关系。Prophet:使用Prophet进行时间序列预测,考虑季节性和趋势变化。住房存量估计:通过待售房产数量和成交量数据来估算现有住房存量。

2024-11-15 11:53:57 57

原创 2024年第十届数维杯数学建模竞赛 问题D:城市韧性和可持续发展能力的评估 结合了最新的chatgpt发布思路和代码

了 特 定 日 期 在 城 市 1和 城 市 2的 待 售 房 产 基 本 信 息 , 如 附 录 1和 2。表 明 未 来 中 国 将 长 期 面 临 人 口 下 降 的 趋 势。( 如 人 口 和 国 内 生 产 总 值 ) , 对 城 市 1 和 城 市 2 不 同 地 区 的 未。分 析 , 并 提 取 这 两 个 城 市 的 共 同 和 独 特 特 征 , 以 及 它 们 各 自 的。你 的 模 型 应 明 确 指 出 两 个 城 市 的 具 体 弱 点 , 未 来 需 要 发 展 的 关。

2024-11-15 09:57:00 503

原创 2024年第十届数维杯数学建模竞赛 问题C: 脉冲星计时噪声扣除和大气时延扣除对时间信号的影响建模 结合了最新的chatgpt发布思路和代码

的 观 测 频 率 下 , 会 有 显 著 的 变 化总电 子 含 量 会 导 致 到 达 时 间 ( TOA) 的 波 动 范 围 为 10 纳 秒 至 数 百 纳 秒。图 3是 大 气 延 迟 的 示 意 图 , 其 中 O表 示 地 球 中 心 , h₀ 表 示 地 球 表 面 高 度。忽 略 纬 度 和 高 度 的 小 修 正 , 天 顶 延 迟 为 7.69 ns, 大 约 是 水 蒸 气 造 成 的 延。迟 进 行 建 模 , 确 保 天 顶 延 迟 小 于 或 等 于 7.69 纳 秒。

2024-11-15 09:56:15 306

原创 2024年第十届数维杯数学建模竞赛 问题B:空间变量的协同估计方法研究 结合了最新的chatgpt发布思路和代码

与 数 理 统 计 不 同 , 空 间 统 计 假 设 空 间 变 量 的 抽 样 点 相 互。尽 管 这 些 方 法 测 量 的 是 相 同 的 物 理 量 , 但 测 量 原 理 的 差 异 会。此 外 , 一 些 空 间 变 量 可 能 具 有 不 同 的 物 理 意 义 , 但 表 现 出 一 定 的。使 用 重 新 采 样 的 值 估 计 未 采 样 位 置 的 空 间 变 量 值。一 个 或 两 个 协 作 变 量 , 并 研 究 空 间 变 量 ( F1 目 标 变 量 ) 的 变 化。

2024-11-15 09:55:17 193

原创 2024年第十届数维杯数学建模竞赛 问题A:飞机激光测速中的频率估计问题 结合了最新的chatgpt发布思路和代码

请 设 计 一 种 方 法 来 估 计 飞 行 周 期 3中 接 收 信 号 的 频 率。在 附 件 1的 飞 行 周 期 1中 , 接 收 信 号 的 非 噪 声 部 分 的 已 知 幅 值 为 4,因 此 , 在 不 同 飞 行 阶 段 , 接 收 到 的 激 光 信 号 的 特。要 进 行 估 计。在 附 件 1的 飞 行 周 期 2中 , 已 知 实 际 接 收 信 号 的 幅 度。2. 在 实 际 场 景 中 , 接 收 信 号 中 非 噪 声 部 分 的 频 率 是 未 知 的 , 需。

2024-11-15 09:54:15 239

原创 基于YOLOv10深度学习的香蕉成熟度检测系统【免费源码】【yolo香蕉成熟度检测数据集+ui界面+模型+实时检测+6种成熟度类别】

随着全球农业产业数字化的加速发展,自动化和智能化技术在农产品质量控制和分级管理中扮演着越来越重要的角色。香蕉作为一种广受欢迎的热带水果,其成熟度直接影响口感、营养价值以及市场售价。传统的香蕉成熟度判断主要依赖于人工经验,不仅耗时费力,而且主观性强,精确度较低。因此,研究并应用智能化的检测手段来准确判断香蕉的成熟度成为一项重要课题。近年来,深度学习在图像识别和目标检测领域取得了显著的突破,YOLO(You Only Look Once)系列模型因其实时性和高效性在物体检测方面获得了广泛应用。

2024-11-14 10:28:09 1022 1

原创 基于YOLOv10深度学习的疲劳驾驶检测系统

疲劳驾驶已成为全球交通事故的主要原因之一,尤其是在长途驾驶或深夜驾驶中,驾驶员的注意力容易下降,反应迟钝,甚至可能完全失去意识。根据世界卫生组织(WHO)的统计,疲劳驾驶导致的交通事故占全球交通事故总数的显著比例,给公共安全和个人生命财产带来了极大威胁。传统的驾驶员监控系统通常依赖于静态的环境监测或驾驶员的主观感受,但这些方法往往存在局限性,难以实时、准确地判断驾驶员是否处于疲劳状态。近年来,计算机视觉和深度学习技术的迅猛发展为解决这一问题提供了新的解决方案。

2024-11-13 12:26:15 719

原创 基于YOLOv10深度学习的昆虫分类检测系统【免费源码】【yolo昆虫分类检测数据集+ui界面+模型+实时检测+10种昆虫类别】

随着全球农业生产的快速发展,病虫害成为制约农业增产增收的重要因素之一,尤其是在广阔的田间环境中,昆虫害虫的发生与传播对作物的生长带来极大的威胁。为了有效防控害虫,精准、及时地检测不同种类的昆虫并掌握其动态分布显得尤为重要。传统的昆虫识别和监测方式通常依赖于人工观察、田间采样与实验室鉴定,虽然这些方法能够获得较为准确的结果,但效率较低、耗时长,且依赖于经验丰富的农业技术人员,在大规模应用中存在明显的不足。

2024-11-06 17:34:46 808

原创 基于YOLOv10深度学习的交通标志检测系统【免费源码】【yolo交通标志检测数据集+ui界面+模型+实时检测+83个类别】

在现代智能交通系统中,交通标志检测和识别是一项至关重要的技术,尤其是随着自动驾驶、智能辅助驾驶等技术的飞速发展,车辆对交通标志的准确识别和实时响应直接关系到驾驶安全和效率。YOLO(You Only Look Once)系列模型在计算机视觉领域表现优异,尤其适合实时物体检测任务。随着YOLO版本的不断更新,YOLOv10的发布进一步提升了目标检测的精度和速度,为交通标志检测带来了更强的技术支持。本文将介绍一个基于YOLOv10的交通标志检测系统,旨在实现对各类交通标志的高效检测和识别。

2024-11-06 13:17:28 1055

原创 基于YOLOv10深度学习的草坪杂草检测系统【免费源码】【yolo杂草数据集+ui界面+模型+实时检测】

草坪杂草管理对于园林绿化和农业至关重要。随着人工智能和计算机视觉的发展,YOLO(You Only Look Once)系列算法在实时物体检测中的应用广受关注。YOLOv10作为YOLO家族的最新版本,以其改进的网络结构和增强的特征提取能力,被证明在草坪杂草检测中具有极高的准确性和速度优势。模型结构优化YOLOv10通过引入新的卷积模块和自注意力机制,优化了网络的检测性能。相较于YOLOv5和YOLOv7,YOLOv10进一步增强了特征图的多层融合,在复杂场景下表现更优。

2024-11-05 23:25:41 723

原创 基于YOLOv10深度学习的口罩检测系统【免费源码】【yolo是否佩戴口罩数据集+ui界面+模型+实时检测】

YOLOv10口罩检测系统是一款基于深度学习的实时目标检测系统,专门用于识别是否佩戴口罩。采用YOLOv10(You Only Look Once, Version 10)最新的神经网络架构,系统可以高效地从图像和视频流中快速检测并分类“佩戴口罩”、“未佩戴口罩”以及“错误佩戴”等多种情况。该系统具备高精度、高效率和低延迟的特点,非常适合部署在各种场景中,如公共场所监控、企业出入口管理、学校、医院等需要佩戴口罩的区域。其应用不仅提升了防疫措施的执行效率,还大大降低了人工检查的成本,确保了人员的健康与安全。

2024-11-05 18:49:44 932 1

原创 【免费源码】基于YOLOv10的植物病害实时检测系统【yolo植物病害数据集+ui界面+模型】

随着全球农业的不断发展,植物病害问题对农作物产量和质量造成了严重影响,威胁着粮食安全和农业经济。传统的病害检测方法往往依赖于农学专家的肉眼判断,效率低、精度受限,且难以实现大规模、实时检测。基于YOLOv10的植物病害检测系统,利用最新的深度学习算法,能够高效识别和分类不同作物的常见病害,在推动农业智能化和精准化方面具有重要意义。提升农作物健康管理效率YOLOv10植物病害检测系统可以帮助农户和农业技术人员在早期识别作物病害,使得病害防治措施能够更早、更准确地进行,有效遏制病害蔓延,减少损失。

2024-11-03 22:24:16 675

原创 2024 年 大湾区杯 粤港澳金融 数学建模竞赛 B 题 粤港澳大湾区经济预测数学模型 详细思路+代码

此模型提供了对粤港澳大湾区经济影响因素的定量分析,并且有助于预测未来经济发展趋势。通过进一步收集更多的时空数据,以及考虑更多复杂的建模方法,我们可以优化和丰富预测模型的准确性和应用范围。该模型结合了ARIMA的时间序列特征和多元回归的影响因素特征,较全面地预测了未来5-10年粤港澳大湾区的经济增长情况。基于预测结果,提出了多种具体的策略和优化方案,有助于粤港澳大湾区的政策制定和资源优化配置,进一步推动经济持续健康发展。

2024-11-02 23:37:40 420

第20章 偏微分方程的数值解.pdf

第20章 偏微分方程的数值解

2024-05-14

数学建模的29个通用模型及matlab解法.zip

第01章 线性规划。 第02章 整数规划 第03章 非线性规划 第04章 动态规划 第05章 图与网络 第06章 排队论 第07章 对策论 第08章 层次分析法 第09章 插值与拟合 第10章 数据的统计描述和分析 第11章 方差分析 第12章 回归分析 第13章 微分方程建模 第14章 稳定状态模型 第15章 常微分方程的解法 第16章 差分方程模型 第17章 马氏链模型 第18章 变分法模型 第19章 神经网络模型 第20章 偏微分方程的数值解 第21章 目标规划 第22章 模糊数学模型 第23章 现代优化算法 第24章 时间序列模型 第25章 存贮论 第26章 经济与金融中的优化问题 第27章 生产与服务运作管理中的优化问题 第28章 灰色系统理论及其应用 第29章 多元分析 第30章 偏最小二乘回归

2024-05-14

yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件

支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件 支持['bird','cat', 'cow', 'dog', 'horse', 'sheep']6种动物的检测 yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件

2024-05-09

Squeezed Edge YOLO:边缘设备上的板载对象检测

由于其在自主导航中的关键作用,对高效车载物体检测的需求正在增加。然而,由于 YOLO 等资源受限的边缘设备上的计算要求很高,因此在此类模型上部署此类检测模型具有挑战性。本文研究了一种名为Squeezed Edge YOLO的压缩目标检测模型。该模型被压缩和优化为千字节的参数,以适应此类边缘设备的板载。为了评估 Squeezed Edge YOLO,使用了两个用例 - 人体和形状检测 - 来展示模型的准确性和性能。此外,该模型还部署在具有 8 个 RISC-V 内核的 GAP8 处理器和具有 4GB 内存的 NVIDIA Jetson Nano 上。实验结果表明,Squeezed Edge YOLO模型尺寸优化了8倍,能效提高了76%,整个过程提高了3.3倍。

2024-04-11

奥地利自动驾驶深度学习视觉模型YOLO和DETR的首次定性观察

本研究探讨了单阶段和两阶段二维目标检测算法的应用,如你只看一次(YOLO)、实时设计模型(RT-DETR)算法在自动物体检测中的应用,以提高奥地利道路上自动驾驶的道路安全性。YOLO算法是一种最先进的实时物体检测系统,以其效率和准确性而闻名。在驾驶环境中,其快速识别和跟踪物体的潜力对于高级驾驶辅助系统(ADAS)和自动驾驶汽车至关重要。该研究的重点是奥地利的道路状况和交通情况带来的独特挑战。该国多样化的景观、不同的天气条件和特定的交通法规需要一种量身定制的方法来进行可靠的物体检测。该研究利用了一个选择性数据集,包括在奥地利道路上拍摄的图像和视频,包括城市、农村和高山环境。

2024-04-11

使用YOLO从SDSS图像中检测到边缘低表面亮度星系候选星系

低表面亮度星系(LSBG)是星系群中较暗的成员,被认为是众多的。然而,由于它们的表面亮度低,寻找广域LSBGs样本是困难的,这反过来又限制了我们充分了解星系的形成和演化以及星系关系的能力。边缘LSBG由于其独特的方向,为研究星系结构和星系成分提供了极好的机会。在这项工作中,我们利用You Only Look Once目标检测算法,通过在斯隆数字巡天(SDSS)中训练281个边缘LSBG来构建边缘LSBG检测模型gri-波段合成图像。该模型在测试集上的召回率为94.64%,纯度为95.38%。我们搜索了 938,046gri来自 SDSS 数据发布 16 的波段图像,发现了 52,293 个候选 LSBG。为了提高候选LSBG的纯度并减少污染,我们采用了深度支持向量数据描述算法来识别候选样品中的异常。最终,我们编制了一个包含 40,759 个边缘 LSBG 候选药物的目录。该样本与训练数据集具有相似的特征,主要由蓝色边缘的 LSBG 候选者组成。该目录可通过此 https URL 在线获取。

2024-04-11

yolo使用TomFormer及早准确检测番茄叶病

番茄叶病对番茄种植者构成了重大挑战,导致作物产量大幅下降。及时准确地识别番茄叶病对于成功实施病害管理策略至关重要。本文介绍了一种基于变压器的模型,称为TomFormer,用于番茄叶病检测。该论文的主要贡献包括以下几点:首先,我们提出了一种检测番茄叶病的新方法,即采用结合视觉转换器和卷积神经网络的融合模型。其次,我们的目标是将我们提出的方法应用于Hello Stretch机器人,以实现番茄叶病的实时诊断。第三,我们通过将我们的方法与 YOLOS、DETR、ViT 和 Swin 等模型进行比较来评估我们的方法,证明其能够实现最先进的结果。为了进行实验,我们使用了三个番茄叶病数据集,即 KUTomaDATA、PlantDoc 和 PlanVillage,其中 KUTomaDATA 是从阿联酋阿布扎比的一个温室收集的。最后,我们对模型的性能进行了全面分析,并彻底讨论了我们方法固有的局限性。TomFormer 在 KUTomaDATA、PlantDoc 和 PlantVillage 数据集上表现良好,平均准确率 (mAP) 得分分别为 87%、81% 和 83%。mAP的比较结果表明,我们的方法

2024-04-11

具有混合注意力特征金字塔网络的YOLO算法,用于焊点缺陷检测

传统的人工检测焊点缺陷在工业生产中不再适用,因为效率低、评估不一致、成本高、缺乏实时数据。针对工业场景表面贴装技术中焊点缺陷检测精度低、误检率高、计算成本高等问题,提出了一种新的方法。所提出的解决方案是专门为焊点缺陷检测算法设计的混合注意力机制,通过提高精度同时降低计算成本来改善制造过程中的质量控制。混合注意力机制包括一种增强的多头自注意力和协调注意力机制,增加了注意力网络感知上下文信息的能力,并增强了网络特征的利用范围。坐标注意力机制增强了不同通道之间的连接,减少了位置信息丢失。混合注意力机制增强了网络感知远距离位置信息和学习局部特征的能力。改进后的算法模型对焊点缺陷检测具有较好的检测能力,mAP达到91.5%,比“只看一次”第5版算法高4.3%,优于其他对比算法。与其他版本相比,平均平均精度、精度、召回率和每秒帧数指标也有所改进。在满足实时检测要求的同时,可以提高检测精度。

2024-04-11

DiffYOLO:通过YOLO和扩散模型进行抗噪声目标检测

以YOLO系列为代表的目标检测模型得到了广泛的应用,并在高质量的数据集上取得了很好的成绩,但并不是所有的工作条件都是理想的。为了解决在低质量数据集上定位目标的问题,现有方法要么训练新的目标检测网络,要么需要大量低质量数据集进行训练。然而,我们在本文中提出了一个框架,并将其应用于称为 DiffYOLO 的 YOLO 模型。具体来说,我们从去噪扩散概率模型中提取特征图,以增强训练有素的模型,这使我们能够在高质量数据集上微调YOLO,并在低质量数据集上进行测试。结果证明,该框架不仅可以证明在噪声数据集上的性能,还可以证明在高质量测试数据集上的检测结果。我们稍后将补充更多的实验(使用各种数据集和网络架构)。

2024-04-11

YOLOv7无人机实时探测人体

计算机视觉和遥感中最重要的问题之一是物体检测,它可以识别图片中不同事物的特定类别。公共安全的两个关键数据来源是无人驾驶飞行器(UAV)产生的热红外(TIR)遥感多场景照片和视频。由于目标尺度小,场景信息复杂,相对于可观看视频的分辨率较低,并且缺乏公开可用的标记数据集和训练模型,因此其目标检测过程仍然很困难。本研究提出了一种用于图片和视频的UAV TIR目标检测框架。用于收集地面TIR照片和视频的前视红外(FLIR)相机用于创建基于CNN架构的“你只看一次”(YOLO)模型。结果表明,在验证任务中,使用YOLOv7(YOLO版本7)最先进的模型\cite{1},检测人体的平均精度为IOU(Intersection over Union)= 0.5,为72.5%,而检测速度约为161帧/秒(FPS/秒)。该应用展示了YOLO架构的实用性,该应用根据YOLOv7模型从各种无人机的观察角度评估了无人机TIR视频中人员的交叉检测性能。本工作对使用深度学习模型的TIR图片和视频目标检测进行定性和定量评估得到了有利的支持。

2024-04-11

使用 YOLO 对牛栏编号进行分类

本文介绍了CowStallNumbers数据集,该数据集是从奶牛视频中提取的图像集合,旨在推进奶牛摊位数量检测领域。该数据集包括 1042 张训练图像和 261 张测试图像,摊位数范围为 0 到 60。为了增强数据集,我们对YOLO模型进行了微调,并应用了数据增强技术,包括随机裁剪、中心裁剪和随机旋转。实验结果表明,识别失速数的准确率为95.4%。

2024-04-11

YOLO-Former:YOLO与ViT握手

所提出的YOLO-Former方法将Transformer和YOLOv4的思想无缝集成,创建了一个高精度、高效率的目标检测系统。该方法利用了 YOLOv4 的快速推理速度,并通过集成卷积注意力和 transformer 模块,融合了 transformer 架构的优势。结果验证了所提方法的有效性,在Pascal VOC数据集上的平均精度(mAP)为85.76\%,同时保持了较高的预测速度,帧速率为每秒10.85帧。这项工作的贡献在于展示了这两种最先进技术的创新组合如何导致目标检测领域的进一步改进。

2024-04-11

使用 YOLOv7 和 ESRGAN 改进坑洼检测

坑洼是常见的道路危险,会对车辆造成损坏并给驾驶员带来安全风险。卷积神经网络(CNN)的引入在业界广泛用于基于深度学习方法的目标检测,并在硬件改进和软件实现方面取得了重大进展。在本文中,提出了一种独特的更好算法,以保证使用低分辨率相机或低分辨率图像和视频源,通过超分辨率生成对抗网络(SRGAN)使用超分辨率(SR)进行自动坑洼检测。然后,我们继续使用 You Only Look Once (YOLO) 网络(即 YOLOv7 网络)在低质量和高质量行车记录仪图像上建立基线坑洼检测性能。然后,我们说明并检查了在对低质量图像进行放大实施后,在基准之上获得的速度和准确性。

2024-04-11

基于YOLO的动态序列匹配模型,实现高效的无覆盖图像隐写

许多现有的无封面隐写术方法在封面图像和隐藏数据之间建立了映射关系。存在一个问题,即存储在数据库中的图像数量会随着隐写能力的增加而呈指数增长。对高隐写能力的需求使得构建图像数据库具有挑战性。为了提高隐写系统的图像库利用率和抗攻击能力,我们提出了一种基于动态匹配子串的高效无覆盖方案。YOLO用于选择最优对象,并在这些对象和加扰因子之间建立映射字典。借助该字典,每个图像都被有效地分配给特定的加扰因子,该因子用于加扰接收器的序列键。为了在有限的图像库中实现足够的隐写能力,加扰序列的所有子串都具有隐藏数据的潜力。完成秘密信息匹配后,将从数据库中获得理想数量的stego图像。实验结果表明,该技术在数据负载、传输安全性、隐藏能力等方面优于以往大多数工作。在典型的几何攻击下,它平均可以恢复79.85%的秘密信息。此外,只需要大约 200 个随机图像即可满足每个图像 19 位的容量。

2024-04-11

基于深度学习的综合感知与通信系统中的目标-用户关联

在集成传感和通信 (ISAC) 系统中,将雷达目标与通信用户设备 (UE) 相匹配可用于多种通信任务,例如主动切换和波束预测。在本文中,我们考虑了一种雷达辅助通信系统,其中基站(BS)配备了具有双重目标的多输入多输出(MIMO)雷达:(i)将车载雷达目标与通信波束空间中的车载设备(VE)相关联,以及(ii)根据雷达数据预测每个VE的波束成形矢量。建议的目标用户 (T2U) 关联包括两个阶段。首先,从距角图像中检测车辆雷达目标,并估计每个目标的波束成形矢量。然后,将推断出的每目标波束成形矢量与BS上用于通信的波束成形矢量进行匹配,以执行目标到用户(T2U)关联。通过修改“只看一次”(YOLO)模型,在模拟的距离角度雷达图像上进行训练,从而获得联合多目标检测和波束推理。不同城市车辆出行情景下的仿真结果表明,所提T2U方法提供了随BS天线阵列尺寸增加而增加的正确关联概率,突出了波束空间中VE可分离性的相应增加。此外,我们表明,改进后的YOLO架构可以有效地进行波束预测和雷达目标检测,在不同天线阵列尺寸下,后者的平均精度相似。

2024-04-11

使用基于YOLO的学习方法对农业进行实时目标检测和机器人操作

优化普通种植作物的作物收获过程对于农业产业化的目标具有重要意义。如今,机器视觉的利用使农作物的自动识别成为可能,从而提高了收割效率,但挑战仍然存在。本研究提出了一个新框架,该框架结合了卷积神经网络(CNN)的两个独立架构,以便在模拟环境中同时完成作物检测和收获(机器人操作)的任务。模拟环境中的裁剪图像会进行随机旋转、裁剪、亮度和对比度调整,以创建用于数据集生成的增强图像。“你只看一次”算法框架与传统的矩形边界框一起使用,用于作物定位。随后,所提出的方法通过视觉几何组模型利用获取的图像数据,以揭示机器人操作的抓取位置。

2024-04-11

YOLO-World:实时开放词汇对象检测

You Only Look Once (YOLO) 系列探测器已成为高效实用的工具。但是,它们对预定义和训练对象类别的依赖限制了它们在开放场景中的适用性。为了解决这一局限性,我们引入了 YOLO-World,这是一种创新方法,通过视觉语言建模和大规模数据集的预训练,增强了 YOLO 的开放词汇检测功能。具体而言,我们提出了一种新的可重新参数化的视觉-语言路径聚合网络(RepVL-PAN)和区域-文本对比损失,以促进视觉和语言信息之间的交互。我们的方法擅长以零射程、高效率检测各种物体。在具有挑战性的 LVIS 数据集上,YOLO-World 在 V100 上以 52.0 FPS 实现了 35.4 AP,在准确性和速度方面都优于许多最先进的方法。此外,经过微调的 YOLO-World 在多个下游任务上取得了出色的性能,包括对象检测和开放词汇实例分割。

2024-04-11

基于YOLO的红外小目标检测范式

在计算机视觉中,检测红外图像中从小到小的目标是一项具有挑战性的任务,尤其是在将这些目标与嘈杂或有纹理的背景区分开来时。与分割神经网络相比,YOLO 等传统目标检测方法难以检测微小目标,导致检测小目标时性能较弱。为了在保持高检测率的同时减少误报的数量,我们引入了反之亦然YOLO检测器训练的决策标准。后者利用了出乎意料的小目标,以区分他们与复杂背景。将这一统计标准添加到YOLOv7-tine中,弥合了用于红外小目标检测和目标检测网络的最先进的分割方法之间的性能差距。它还显著提高了YOLO在少镜头设置下的鲁棒性。

2024-04-11

使用YOLO v7在磁共振成像中检测肾脏

简介 本研究探讨了使用最新的 You Only Look Once (YOLO V7) 物体检测方法,通过训练和测试医学图像格式上的改进 YOLO V7,来增强医学成像中的肾脏检测。方法 研究纳入878例肾细胞癌(RCC)不同亚型患者和206例肾脏正常患者。共检索到1084例患者的5657次MRI扫描。从回顾性维护的数据库中招募了 326 名患者,涉及 1034 个肿瘤,并在他们的肿瘤周围绘制了边界框。在 80% 的注释案例上训练了主要模型,其中 20% 用于测试(主要测试集)。然后使用最佳主要模型来识别其余 861 名患者的肿瘤,并使用该模型在他们的扫描中生成边界框坐标。创建了 10 个基准训练集,其中包含未分段患者的生成坐标。用于预测主要测试集中肾脏的最终模型。我们报告了阳性预测值(PPV)、灵敏度和平均精密度(mAP)。结果 初级训练集的平均PPV为0.94 +/- 0.01,灵敏度为0.87 +/- 0.04,mAP为0.91 +/- 0.02。最佳主要模型的 PPV 为 0.97,灵敏度为 0.92,mAP 为 0.95。最终模型的平均 PPV 为 0.95 +/- 0.03

2024-04-11

YOLO-CIANNA:在无线电数据中进行深度学习的星系检测 I. 一种受YOLO启发的新型源检测方法应用于SKAO SDC1

即将到来的平方公里阵列(SKA)将为天文仪器产生的数据量设定一个新标准,这可能会挑战广泛采用的数据分析工具,这些工具无法与数据大小进行充分扩展。本研究旨在通过应用现代深度学习目标检测技术,为海量射电天文数据集开发一种新的源检测和表征方法。这些方法已经证明了它们在复杂的计算机视觉任务中的效率,我们试图确定它们在应用于天文数据时的具体优势和劣势。我们介绍了YOLO-CIANNA,这是一款专为天文数据集设计的高度定制的深度学习目标探测器。本文介绍了该方法,并描述了解决射电天文图像特定挑战所需的所有低级适应。我们使用来自 SKAO SDC1 数据集的模拟 2D 连续体图像演示了这种方法的功能。我们的方法优于特定 SDC1 数据集上所有其他已发表的结果。使用 SDC1 指标,我们将挑战获胜分数提高了 +139\%,将唯一其他挑战后参与的分数提高了 +61\%。我们的目录的检测纯度为 94%,同时检测的来源比以前的最高分结果多 40 至 60%。经过训练的模型还可以强制在后处理中达到 99% 的纯度,并且仍然比其他高分方法多检测 10% 到 30% 的来源。它还能够实时检测,在单个 GPU 上每秒

2024-04-11

深度学习 国际象棋游戏数据集

数据集介绍 数据介绍 这是从Lichess.org网站上的精选用户那里收集的20,000多个游戏的集合,以及如何收集更多游戏。将来,我还会收集更多游戏。 内容范围 游戏编号; 额定(T / F); 开始时间; 时间结束; 转弯数量; 游戏状态; 优胜者; 时间增量; 白色玩家编号; 白人球员等级; 黑人玩家ID; 黑人球员等级; 标准象棋符号的所有动作; 开放的生态(任何给定开口的标准化代码,在此处列出); 开幕名称; 开启层(开启阶段的移动次数) 探索方向 单个国际象棋游戏中包含许多信息,更不用说多个游戏的完整数据集了。它主要是一种模式游戏,而数据科学就是要检测数据模式,这就是为什么国际象棋是过去在AI领域投入最多的原因之一。该数据集收集了20,000个游戏中可用的所有信息,并以易于处理的格式进行了分析,例如,分析了允许玩家以黑白棋获胜的方式,多少元(游戏外)影响游戏的因素,黑白与空缺与胜利之间的关系等等。

2024-07-31

深度学习行人检测数据集

行人检测的图片,内置10000张行人图像,1000张骑自行车图像,1000张骑车图像。

2024-07-31

Kolektor:表面缺陷数据集

该数据集是Kolektor Group收集并标注的电子换向器缺陷数据集。数据集中包含了50种编写的电子换向器,每种有8张图片以及其语义分割的label。图像的大小为500×1240像素。 数据集介绍 该数据集是Kolektor Group收集并标注的电子换向器缺陷数据集。数据集中包含了50种编写的电子换向器,每种有8张图片以及其语义分割的label。图像的大小为500×1240像素。 数据集包括: 399幅图片:52幅可见缺陷图像、347幅图像无任何缺陷 尺寸的原始图像:宽度:500 px,高度:1240至1270 px 对于训练和评估,图像应该调整到512 x 1408 px。 对于每个项目,缺陷仅在至少一个图像中可见,而两个项目在两个图像上有缺陷,这意味着有52个图像中的缺陷是可见的。其余347幅图像作为无缺陷表面的负面例子.

2024-07-31

第25章 存贮论.pdf

第25章 存贮论

2024-05-14

第30章 偏最小二乘回归.pdf

第30章 偏最小二乘回归

2024-05-14

第28章 灰色系统理论及其应用.pdf

第28章 灰色系统理论及其应用

2024-05-14

第21章 目标规划.pdf

第21章 目标规划

2024-05-14

第23章 现代优化算法.pdf

第23章 现代优化算法

2024-05-14

第19章 神经网络模型.pdf

第19章 神经网络模型

2024-05-14

第16章 差分方程模型.pdf

第16章 差分方程模型

2024-05-14

第13章 微分方程建模.pdf

第13章 微分方程建模

2024-05-14

第12章 回归分析.pdf

第12章 回归分析

2024-05-14

第14章 稳定状态模型.pdf

第14章 稳定状态模型

2024-05-14

第11章 方差分析.pdf

第11章 方差分析

2024-05-14

第07章 对策论.pdf

第07章 对策论

2024-05-14

第08章 层次分析法.pdf

第08章 层次分析法

2024-05-14

第09章 插值与拟合.pdf

第09章 插值与拟合

2024-05-14

第04章 动态规划.pdf

第04章 动态规划

2024-05-14

第06章 排队论.pdf

第06章 排队论

2024-05-14

第05章 图与网络.pdf

第05章 图与网络

2024-05-14

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除