- 博客(2874)
- 资源 (10)
- 收藏
- 关注
原创 【免费源码】基于YOLOv10的火焰烟雾实时检测系统【yolo火焰烟雾数据集+ui界面+模型】
6744张图像在构建用于火焰烟雾检测的深度学习模型时,一个全面和精确标注的数据集是至关重要的。我们的数据集共包含6744张图像,其中包括4832张训练图像1000张验证图像,以及912张测试图像。这样的划分旨在确保模型能在充足的数据上进行训练,同时留出足够的样本来验证和测试模型的性能。在数据预处理阶段,我们采取了几项关键步骤以确保数据集的质量。首先,所有图像都经过了自动方向校正,并剥离了EXIF方向信息,这是为了消除因摄影设备的不同拍摄角度而带来的方向差异。
2024-11-02 21:33:39 811
原创 YOLOv5/v8车牌识别系统,QT可视化界面,可更换模型,更换.pt文件可以可视化其他深度学习项目,详细环境搭建+视频展示
yolov5/yolov8车牌识别2.0可视化QT界面runs文件夹中,存放训练和评估的结果图。
2024-05-07 16:03:40 2856 40
原创 2024年 毕业设计 机器学习&深度学习实战案例,含有python代码和教程 (10月26日已更新856篇)
10月促销价39.9,适合初学python机器学习深度学习的学生,从入门到精通,专栏内含有讲解,每篇文章都含有对应的代码,会持续更新,更新至千篇案例,已经更新六百多个项。
2023-10-05 16:16:42 6904 12
原创 基于YOLOv10深度学习的红细胞、白细胞和血小板检测系统【免费源码】【yolo红细胞、白细胞和血小板数据集+ui界面+模型+实时检测】
血细胞检测是临床医学中一项重要的基础诊断手段,对疾病筛查、健康评估以及疾病进程的监测具有重要意义。传统血细胞检测依赖人工显微镜观察或自动化血液分析仪,前者耗时且依赖经验,后者成本较高且对设备要求严格。因此,开发一种高效、精准、低成本的血细胞检测系统成为研究热点。随着深度学习技术的快速发展,目标检测算法在医学图像分析领域展现了强大的潜力和应用前景。YOLO(You Only Look Once)作为一种高效的目标检测算法,以其实时性和高精度在众多场景中得到了广泛应用。
2024-11-17 00:45:56 514
原创 基于YOLOv10深度学习的条形码检测系统【免费源码】【yolo条形码数据集+ui界面+模型+实时检测】
随着电子商务和自动化技术的迅猛发展,条形码作为商品标识和信息传递的重要手段,在现代社会中得到了广泛应用。无论是在零售、物流、仓储还是生产等领域,条形码的自动识别技术都发挥着至关重要的作用。条形码的快速准确识别不仅提高了工作效率,也减少了人工错误和操作成本。因此,开发一种高效、精确且易于操作的条形码检测系统具有重要的实际应用价值。近年来,深度学习在计算机视觉领域取得了显著的进展,尤其是基于卷积神经网络(CNN)的目标检测算法,逐渐成为图像识别中的主流技术。
2024-11-17 00:30:26 377
原创 基于YOLOv10深度学习的3D打印缺陷检测系统【免费源码】【yolo3D打印缺陷数据集+ui界面+模型+实时检测】
随着3D打印技术的迅速发展,越来越多的行业开始应用该技术来进行原型设计、生产制造以及定制化生产。3D打印的优势在于其能够灵活地制造复杂的结构,并减少传统制造工艺中的材料浪费。然而,3D打印的质量控制仍然是一个挑战,尤其是在打印过程中可能出现各种缺陷,如意大利面缺陷(Spaghetti)、小疙瘩(Zits)、拉丝(Stringing)等。这些缺陷不仅影响打印物体的外观,还可能影响其功能性和强度,严重时甚至可能导致产品报废,增加生产成本。
2024-11-17 00:17:00 819
原创 基于YOLOv10深度学习的水下鱼类检测系统【免费源码】【yolo鱼类数据集+ui界面+模型+实时检测】
随着水下生态环境的逐渐恶化,水下生物监测成为环境保护和渔业管理中的重要任务。鱼类作为水下生态系统的重要组成部分,其数量、种类和分布的监测,对于评估生态系统健康状况及制定科学的保护措施具有重要意义。传统的水下鱼类检测方法多依赖人工观测或使用水下摄像设备进行图像处理,这些方法不仅费时费力,而且对环境要求较高,且容易受到人为误差和环境干扰的影响。近年来,深度学习技术,尤其是基于卷积神经网络(CNN)的目标检测算法,已经成为图像处理和物体识别领域的前沿技术。
2024-11-16 23:44:56 460
原创 基于YOLOv10深度学习的船舶识别检测系统【免费源码】【yolo船舶数据集+ui界面+模型+实时检测+10种类别】
随着全球航运业的快速发展,海洋交通安全和船舶管理的需求日益增加。传统的船舶监测方式主要依赖人工巡查、雷达系统和静态数据分析,效率低、准确性差,且难以满足实时、高效的监控需求。为了提升船舶识别的精确度和响应速度,深度学习技术,特别是目标检测模型,已成为当前解决这一问题的重要手段。YOLO(You Only Look Once)系列模型在图像处理领域取得了显著成果,尤其在实时目标检测方面展现了强大的能力。
2024-11-16 22:46:04 830
原创 基于YOLOv10深度学习的设备泄漏检测系统【免费源码】【yolo设备泄漏数据集+ui界面+模型+实时检测】
设备泄漏是工业生产中常见且严重的问题,可能导致资源浪费、环境污染,甚至安全事故。传统的泄漏检测方法通常依赖于人工检查或简单的传感器监测,这些方法在效率、精度和实时性方面存在明显不足。随着深度学习和计算机视觉技术的飞速发展,基于目标检测的自动化泄漏检测系统逐渐成为解决这一问题的有效途径。YOLO(You Only Look Once)作为一种高效的目标检测算法,以其速度快、精度高、实时性强的特点广泛应用于各类视觉任务。
2024-11-16 22:04:52 570
原创 基于YOLOv10深度学习的石油泄漏检测系统【免费源码】【yolo石油泄漏数据集+ui界面+模型+实时检测】
石油作为一种重要的能源资源,其开采、运输和存储过程中的泄漏问题,不仅会对生态环境造成严重破坏,还可能引发火灾、爆炸等安全隐患。传统的石油泄漏检测手段依赖于人工巡检和监测设备,这种方式不仅成本高、效率低,而且在复杂环境下难以及时发现问题。随着深度学习技术的快速发展,目标检测算法在工业监测中的应用成为可能。YOLO(You Only Look Once)作为一种高效的目标检测算法,以其实时性和准确性受到广泛关注。
2024-11-16 21:45:24 510
原创 基于YOLOv10深度学习的数字识别系统【免费源码】【yolo数字1-10数据集+ui界面+模型+实时检测】
随着深度学习技术的快速发展,目标检测领域取得了显著进展。YOLO(You Only Look Once)系列模型以其高效的检测性能和实时性广泛应用于各种场景,如自动驾驶、视频监控和智能设备。针对特定任务,如数字识别,其需求同样日益增长,特别是在工业质量检测、文档数字提取、车牌识别等领域。本项目基于最新的YOLOv10模型,设计并实现了一套完整的数字识别系统。该系统以1至10的数字为识别对象,结合精心设计的数据集和训练策略,在保证高检测精度的同时实现了实时检测能力。
2024-11-16 21:22:18 472
原创 基于YOLOv10深度学习的手机检测系统【免费源码】【yolo手机数据集+ui界面+模型+实时检测】
基于YOLOv10深度学习的手机检测系统利用YOLOv10模型进行实时目标检测,能够高效、精准地识别和定位图像中的手机。系统使用经过标注的手机数据集,确保模型具有较强的泛化能力,并通过简洁的UI界面实现图像和视频的实时检测功能。该系统能够在不同条件下进行手机检测,并实时显示检测结果,包括目标的位置和类别信息。项目提供完整的开源代码和数据集,支持开发者进行二次开发,广泛应用于手机自动检测、物品追踪及安防监控等领域。3500张图像在构建用于手机检测的深度学习模型时,一个全面和精确标注的数据集是至关重要的。
2024-11-16 18:11:12 677
原创 基于YOLOv10深度学习的车辆类型检测系统【免费源码】【yolo车辆类型数据集+ui界面+模型+实时检测+7种车辆类型+准确率高达99.1%】
随着智能交通系统(ITS)的发展,车辆类型识别作为交通监控与管理的关键技术之一,得到了广泛应用。传统的车辆类型检测方法通常依赖于人工标注和规则算法,然而,随着交通流量的增加和车辆种类的多样化,这些方法的效率和准确性逐渐面临挑战。因此,基于深度学习的目标检测技术成为了车辆类型分类检测领域的主流解决方案。YOLO(You Only Look Once)作为一种高效的实时目标检测算法,在计算机视觉领域取得了显著的成功。
2024-11-16 17:53:21 549
原创 基于YOLOv10深度学习的无人机检测系统【免费源码】【yolo无人机数据集+ui界面+模型+实时检测】
近年来,无人机技术的快速发展为物流运输、农业监测、灾害救援等领域带来了重要变革,但也引发了诸如隐私安全、非法入侵等问题。如何快速、准确地检测无人机成为一个亟待解决的技术难题。深度学习技术,尤其是基于YOLO(You Only Look Once)框架的目标检测算法,以其高效的实时性能和优异的检测精度,成为解决此问题的理想选择。本项目基于最新的YOLOv10算法,针对无人机目标检测需求,构建了一套完整的检测系统。
2024-11-16 17:03:46 874
原创 基于YOLOv10深度学习的奶牛安全检测系统【免费源码】【yolo奶牛行为数据集+ui界面+模型+实时检测+站立行走卧倒检测】
随着现代畜牧业的快速发展,对奶牛的健康管理与行为监测提出了更高的要求。奶牛行为的异常往往是疾病、压力或外界环境变化的早期信号,及时监测并分析奶牛行为可有效降低疾病传播风险,提升奶牛产奶量,优化牧场管理效率。然而,传统的人工监测方法耗时费力且准确性有限,已难以满足规模化牧场管理的需求。近年来,深度学习技术在目标检测领域取得了显著成果,尤其是以YOLO(You Only Look Once)为代表的实时目标检测算法,因其高效性与准确性在视频监控场景中表现优异。
2024-11-16 16:11:05 696
原创 基于YOLOv10深度学习的过敏原食品检测系统【免费源码】【yolo过敏食物数据集+ui界面+模型+实时检测+30种食物】
随着食品种类的丰富和人们饮食需求的多样化,食物过敏已成为全球范围内广受关注的健康问题。由于过敏原可能隐藏在看似普通的食物中,快速准确地检测和识别潜在的过敏原食品对于过敏患者的健康管理至关重要。传统的过敏原检测方法依赖于化学分析或人工判断,既费时费力,又容易出现误判。近年来,深度学习技术在计算机视觉领域的快速发展为食品检测领域提供了新的解决方案。YOLO(You Only Look Once)系列算法因其高效的目标检测性能和实时性备受瞩目。
2024-11-16 15:27:54 601
原创 基于YOLOv10深度学习的树上自然生长的苹果检测系统【免费源码】【yolo苹果数据集+ui界面+模型+摄像头实时检测】
随着科技的不断进步,深度学习和计算机视觉技术在农业领域的应用逐渐成为提升生产效率和减少人工成本的重要手段。尤其是在水果采摘过程中,如何快速、准确地识别树上自然生长的水果,已成为智能农业研究的一个重要课题。苹果作为一种广泛栽培的水果,具有较高的经济价值,传统的人工采摘方式不仅效率低,而且容易出现果实损伤、错采等问题。因此,开发一种基于深度学习的智能检测系统,可以有效解决这一问题,提升采摘过程的自动化和智能化水平。
2024-11-16 14:39:10 742
原创 基于YOLOv10深度学习的苹果腐烂检测系统【免费源码】【yolo苹果腐烂数据集+ui界面+模型+摄像头实时检测】
随着科技的进步,深度学习技术在各个领域的应用得到了广泛关注和迅速发展,尤其是在图像识别领域。水果的品质检测,作为农业生产中的重要环节,传统的人工检查方法不仅费时费力,还容易受到人为因素的影响,难以实现大规模、高效的质量控制。苹果作为全球重要的水果之一,其腐烂问题直接影响着果品的市场价值和消费者的健康安全。因此,开发一种高效、智能的苹果腐烂检测系统具有重要的实践意义。
2024-11-16 14:01:36 504
原创 基于YOLOv10深度学习的苹果新鲜度检测系统【免费源码】【yolo苹果腐烂数据集+ui界面+模型+摄像头实时检测】
yolo苹果腐烂检测。随着现代农业向智能化、精细化方向发展,水果质量的自动检测技术成为保障果品供应链效率的重要手段。苹果作为世界范围内广泛种植的水果,其新鲜度和腐烂状态的快速判断对仓储、运输及销售环节至关重要。然而,传统的人工分拣方法效率低下、误判率高,难以满足现代农业生产的需求。因此,利用深度学习技术实现苹果新鲜和腐烂状态的自动检测,具有重要的研究意义与应用价值。近年来,深度学习目标检测算法在图像分析领域表现出强大的特征提取能力和高效的检测性能,YOLO系列模型更以其实时性和高准确率广受关注。
2024-11-16 12:00:32 644
原创 基于YOLOv10深度学习的冰箱内食物检测系统【免费源码】【yolo食物数据集+ui界面+模型+实时检测+30种食物】
随着人工智能技术的快速发展,深度学习在计算机视觉领域的应用取得了显著的进展,尤其是在物体检测和分类任务中。YOLO(You Only Look Once)作为一种高效的实时目标检测算法,已经被广泛应用于多个行业领域,如安防监控、自动驾驶、医疗影像分析等。随着智能家居和自动化技术的兴起,基于视觉的食品识别技术也逐渐成为智能厨房和食品管理系统中的重要组成部分。本项目基于YOLOv10深度学习算法,开发了一种冰箱内食物检测系统。该系统能够实时识别和定位冰箱内的30种常见食物(),提供了高效的食物管理和监控方案。
2024-11-15 23:51:14 547
原创 基于YOLOv10深度学习的生菜生长周期检测系统【免费源码】【yolo生菜正常周期据集+ui界面+模型+实时检测+五个周期(成熟可收割, 空壳期, 发芽阶段, 结荚期, 幼苗阶段)】
随着现代农业技术的不断发展,智能化与自动化技术已成为提高农业生产效率和减少人工干预的重要手段。生菜作为一种广泛种植的蔬菜,其生长周期的精确监控对于优化种植管理、提高产量和质量具有重要意义。传统的生长周期监测方法通常依赖人工观察,效率低且容易受到人为因素的影响,难以实现实时、精准的监控。近年来,深度学习技术,特别是基于卷积神经网络(CNN)的目标检测算法,已在农业领域的智能监控和物体识别中取得显著进展。
2024-11-15 23:22:28 661
原创 基于YOLOv10深度学习的大豆检测系统【免费源码】【yolo大豆数据集+ui界面+模型+实时检测】
随着人工智能技术的飞速发展,计算机视觉在农业领域的应用逐渐成为研究热点。目标检测作为计算机视觉的重要分支,可以帮助农业从业者实现对作物生长、病害监测和收获管理的智能化管理。其中,大豆作为全球重要的粮食和油料作物,其生长监测与精准管理对保障粮食安全具有重要意义。然而,传统的人工监测方式效率低下且容易受到人为因素干扰,亟需一种高效、智能的解决方案。YOLO(You Only Look Once)系列算法因其高速性与高准确率,已广泛应用于农业目标检测任务。
2024-11-15 22:24:12 586
原创 基于YOLOv10深度学习的家禽鸡检测系统【免费源码】【yolo鸡数据集+ui界面+模型+实时检测】
随着人工智能技术的飞速发展,深度学习在目标检测领域展现出了巨大的潜力和应用价值。在现代农业生产中,家禽养殖逐渐向智能化、规模化方向发展,对自动化监测和管理技术的需求日益迫切。传统的家禽检测与统计方法多依赖人工操作,不仅效率低下,而且易受主观因素影响,难以满足大规模养殖场对实时监控和精确统计的需求。近年来,YOLO(You Only Look Once)系列算法因其高效性和精确性,在目标检测领域广受关注。
2024-11-15 21:44:26 862
原创 基于YOLOv10深度学习的花生种子霉变检测系统【免费源码】【yolo花生种子霉变检测数据集+ui界面+模型+实时检测】
花生种子是重要的农作物种子之一,其品质直接影响着农业生产的产量和质量。然而,在储存和运输过程中,花生种子容易因潮湿、霉菌侵染等问题导致霉变。霉变不仅降低种子的发芽率,还可能对食品安全和农业生产造成威胁。因此,如何快速、准确地检测花生种子霉变成为了农产品质量控制中的关键问题。传统的花生种子霉变检测方法主要依赖人工观察,这种方法存在效率低、准确率不稳定、成本高等缺点,难以满足现代农业对大规模种子检测的需求。随着人工智能和计算机视觉技术的快速发展,基于深度学习的目标检测方法为霉变检测提供了全新的解决方案。
2024-11-15 21:14:37 926
原创 2024年第十届数维杯数学建模竞赛 问题D:城市韧性和可持续发展能力的评估 问题三 详细思路和代码 最新的chatgpt思路和代码
问 题 ( 3) : 利 用 附 录 3和 4中 的 数 据 , 评 估 两 个 城 市 应 对 极 端天 气 和 紧 急 情 况 的 能 力 , 并 定 量 评 估 城 市 的 可 持 续 发 展 能 力 。你 的 模 型 应 明 确 指 出 两 个 城 市 的 具 体 弱 点 , 未 来 需 要 发 展 的 关键 领 域 , 以 及 考 虑 到 有 限 财 政 资 源 的 约 束 , 城 市 的 短 期 和 长 期投 资 计 划 。
2024-11-15 11:58:03 150
原创 2024年第十届数维杯数学建模竞赛 问题D:城市韧性和可持续发展能力的评估 问题二 详细思路和代码 最新的chatgpt思路和代码
问 题 ( 2) : 请 对 城 市 1和 城 市 2不 同 领 域 的 服 务 水 平 进 行 定 量 分 析 , 并 提 取 这 两 个 城 市 的 共 同 和 独 特 特 征 , 以 及 它 们 各 自 的 优 势 和 劣 势。问题2要求对城市1和城市2不同领域的服务水平进行定量分析,并提取这两个城市的共同和独特特征,以及它们各自的优势和劣势。这是一个涉及多维度评估的分析问题,目的是通过对城市服务水平的定量评估,找到它们的相似性、差异性以及相对优势与不足。
2024-11-15 11:55:52 258
原创 2024年第十届数维杯数学建模竞赛 问题D:城市韧性和可持续发展能力的评估 问题一 详细思路和代码 最新的chatgpt思路和代码
特征工程:从原始数据中提取有用特征,进行标准化和构造新的特征。XGBoost:利用XGBoost模型进行房价预测,处理复杂的非线性关系。Prophet:使用Prophet进行时间序列预测,考虑季节性和趋势变化。住房存量估计:通过待售房产数量和成交量数据来估算现有住房存量。
2024-11-15 11:53:57 57
原创 2024年第十届数维杯数学建模竞赛 问题D:城市韧性和可持续发展能力的评估 结合了最新的chatgpt发布思路和代码
了 特 定 日 期 在 城 市 1和 城 市 2的 待 售 房 产 基 本 信 息 , 如 附 录 1和 2。表 明 未 来 中 国 将 长 期 面 临 人 口 下 降 的 趋 势。( 如 人 口 和 国 内 生 产 总 值 ) , 对 城 市 1 和 城 市 2 不 同 地 区 的 未。分 析 , 并 提 取 这 两 个 城 市 的 共 同 和 独 特 特 征 , 以 及 它 们 各 自 的。你 的 模 型 应 明 确 指 出 两 个 城 市 的 具 体 弱 点 , 未 来 需 要 发 展 的 关。
2024-11-15 09:57:00 503
原创 2024年第十届数维杯数学建模竞赛 问题C: 脉冲星计时噪声扣除和大气时延扣除对时间信号的影响建模 结合了最新的chatgpt发布思路和代码
的 观 测 频 率 下 , 会 有 显 著 的 变 化总电 子 含 量 会 导 致 到 达 时 间 ( TOA) 的 波 动 范 围 为 10 纳 秒 至 数 百 纳 秒。图 3是 大 气 延 迟 的 示 意 图 , 其 中 O表 示 地 球 中 心 , h₀ 表 示 地 球 表 面 高 度。忽 略 纬 度 和 高 度 的 小 修 正 , 天 顶 延 迟 为 7.69 ns, 大 约 是 水 蒸 气 造 成 的 延。迟 进 行 建 模 , 确 保 天 顶 延 迟 小 于 或 等 于 7.69 纳 秒。
2024-11-15 09:56:15 306
原创 2024年第十届数维杯数学建模竞赛 问题B:空间变量的协同估计方法研究 结合了最新的chatgpt发布思路和代码
与 数 理 统 计 不 同 , 空 间 统 计 假 设 空 间 变 量 的 抽 样 点 相 互。尽 管 这 些 方 法 测 量 的 是 相 同 的 物 理 量 , 但 测 量 原 理 的 差 异 会。此 外 , 一 些 空 间 变 量 可 能 具 有 不 同 的 物 理 意 义 , 但 表 现 出 一 定 的。使 用 重 新 采 样 的 值 估 计 未 采 样 位 置 的 空 间 变 量 值。一 个 或 两 个 协 作 变 量 , 并 研 究 空 间 变 量 ( F1 目 标 变 量 ) 的 变 化。
2024-11-15 09:55:17 193
原创 2024年第十届数维杯数学建模竞赛 问题A:飞机激光测速中的频率估计问题 结合了最新的chatgpt发布思路和代码
请 设 计 一 种 方 法 来 估 计 飞 行 周 期 3中 接 收 信 号 的 频 率。在 附 件 1的 飞 行 周 期 1中 , 接 收 信 号 的 非 噪 声 部 分 的 已 知 幅 值 为 4,因 此 , 在 不 同 飞 行 阶 段 , 接 收 到 的 激 光 信 号 的 特。要 进 行 估 计。在 附 件 1的 飞 行 周 期 2中 , 已 知 实 际 接 收 信 号 的 幅 度。2. 在 实 际 场 景 中 , 接 收 信 号 中 非 噪 声 部 分 的 频 率 是 未 知 的 , 需。
2024-11-15 09:54:15 239
原创 基于YOLOv10深度学习的香蕉成熟度检测系统【免费源码】【yolo香蕉成熟度检测数据集+ui界面+模型+实时检测+6种成熟度类别】
随着全球农业产业数字化的加速发展,自动化和智能化技术在农产品质量控制和分级管理中扮演着越来越重要的角色。香蕉作为一种广受欢迎的热带水果,其成熟度直接影响口感、营养价值以及市场售价。传统的香蕉成熟度判断主要依赖于人工经验,不仅耗时费力,而且主观性强,精确度较低。因此,研究并应用智能化的检测手段来准确判断香蕉的成熟度成为一项重要课题。近年来,深度学习在图像识别和目标检测领域取得了显著的突破,YOLO(You Only Look Once)系列模型因其实时性和高效性在物体检测方面获得了广泛应用。
2024-11-14 10:28:09 1022 1
原创 基于YOLOv10深度学习的疲劳驾驶检测系统
疲劳驾驶已成为全球交通事故的主要原因之一,尤其是在长途驾驶或深夜驾驶中,驾驶员的注意力容易下降,反应迟钝,甚至可能完全失去意识。根据世界卫生组织(WHO)的统计,疲劳驾驶导致的交通事故占全球交通事故总数的显著比例,给公共安全和个人生命财产带来了极大威胁。传统的驾驶员监控系统通常依赖于静态的环境监测或驾驶员的主观感受,但这些方法往往存在局限性,难以实时、准确地判断驾驶员是否处于疲劳状态。近年来,计算机视觉和深度学习技术的迅猛发展为解决这一问题提供了新的解决方案。
2024-11-13 12:26:15 719
原创 基于YOLOv10深度学习的昆虫分类检测系统【免费源码】【yolo昆虫分类检测数据集+ui界面+模型+实时检测+10种昆虫类别】
随着全球农业生产的快速发展,病虫害成为制约农业增产增收的重要因素之一,尤其是在广阔的田间环境中,昆虫害虫的发生与传播对作物的生长带来极大的威胁。为了有效防控害虫,精准、及时地检测不同种类的昆虫并掌握其动态分布显得尤为重要。传统的昆虫识别和监测方式通常依赖于人工观察、田间采样与实验室鉴定,虽然这些方法能够获得较为准确的结果,但效率较低、耗时长,且依赖于经验丰富的农业技术人员,在大规模应用中存在明显的不足。
2024-11-06 17:34:46 808
原创 基于YOLOv10深度学习的交通标志检测系统【免费源码】【yolo交通标志检测数据集+ui界面+模型+实时检测+83个类别】
在现代智能交通系统中,交通标志检测和识别是一项至关重要的技术,尤其是随着自动驾驶、智能辅助驾驶等技术的飞速发展,车辆对交通标志的准确识别和实时响应直接关系到驾驶安全和效率。YOLO(You Only Look Once)系列模型在计算机视觉领域表现优异,尤其适合实时物体检测任务。随着YOLO版本的不断更新,YOLOv10的发布进一步提升了目标检测的精度和速度,为交通标志检测带来了更强的技术支持。本文将介绍一个基于YOLOv10的交通标志检测系统,旨在实现对各类交通标志的高效检测和识别。
2024-11-06 13:17:28 1055
原创 基于YOLOv10深度学习的草坪杂草检测系统【免费源码】【yolo杂草数据集+ui界面+模型+实时检测】
草坪杂草管理对于园林绿化和农业至关重要。随着人工智能和计算机视觉的发展,YOLO(You Only Look Once)系列算法在实时物体检测中的应用广受关注。YOLOv10作为YOLO家族的最新版本,以其改进的网络结构和增强的特征提取能力,被证明在草坪杂草检测中具有极高的准确性和速度优势。模型结构优化YOLOv10通过引入新的卷积模块和自注意力机制,优化了网络的检测性能。相较于YOLOv5和YOLOv7,YOLOv10进一步增强了特征图的多层融合,在复杂场景下表现更优。
2024-11-05 23:25:41 723
原创 基于YOLOv10深度学习的口罩检测系统【免费源码】【yolo是否佩戴口罩数据集+ui界面+模型+实时检测】
YOLOv10口罩检测系统是一款基于深度学习的实时目标检测系统,专门用于识别是否佩戴口罩。采用YOLOv10(You Only Look Once, Version 10)最新的神经网络架构,系统可以高效地从图像和视频流中快速检测并分类“佩戴口罩”、“未佩戴口罩”以及“错误佩戴”等多种情况。该系统具备高精度、高效率和低延迟的特点,非常适合部署在各种场景中,如公共场所监控、企业出入口管理、学校、医院等需要佩戴口罩的区域。其应用不仅提升了防疫措施的执行效率,还大大降低了人工检查的成本,确保了人员的健康与安全。
2024-11-05 18:49:44 932 1
原创 【免费源码】基于YOLOv10的植物病害实时检测系统【yolo植物病害数据集+ui界面+模型】
随着全球农业的不断发展,植物病害问题对农作物产量和质量造成了严重影响,威胁着粮食安全和农业经济。传统的病害检测方法往往依赖于农学专家的肉眼判断,效率低、精度受限,且难以实现大规模、实时检测。基于YOLOv10的植物病害检测系统,利用最新的深度学习算法,能够高效识别和分类不同作物的常见病害,在推动农业智能化和精准化方面具有重要意义。提升农作物健康管理效率YOLOv10植物病害检测系统可以帮助农户和农业技术人员在早期识别作物病害,使得病害防治措施能够更早、更准确地进行,有效遏制病害蔓延,减少损失。
2024-11-03 22:24:16 675
原创 2024 年 大湾区杯 粤港澳金融 数学建模竞赛 B 题 粤港澳大湾区经济预测数学模型 详细思路+代码
此模型提供了对粤港澳大湾区经济影响因素的定量分析,并且有助于预测未来经济发展趋势。通过进一步收集更多的时空数据,以及考虑更多复杂的建模方法,我们可以优化和丰富预测模型的准确性和应用范围。该模型结合了ARIMA的时间序列特征和多元回归的影响因素特征,较全面地预测了未来5-10年粤港澳大湾区的经济增长情况。基于预测结果,提出了多种具体的策略和优化方案,有助于粤港澳大湾区的政策制定和资源优化配置,进一步推动经济持续健康发展。
2024-11-02 23:37:40 420
数学建模的29个通用模型及matlab解法.zip
2024-05-14
yolo猫狗识别数据集,YOLO动物识别数据集,包括训练好的yolov5模型,包含几千张jpg和对应的txt文件
2024-05-09
Squeezed Edge YOLO:边缘设备上的板载对象检测
2024-04-11
奥地利自动驾驶深度学习视觉模型YOLO和DETR的首次定性观察
2024-04-11
使用YOLO从SDSS图像中检测到边缘低表面亮度星系候选星系
2024-04-11
yolo使用TomFormer及早准确检测番茄叶病
2024-04-11
具有混合注意力特征金字塔网络的YOLO算法,用于焊点缺陷检测
2024-04-11
DiffYOLO:通过YOLO和扩散模型进行抗噪声目标检测
2024-04-11
YOLOv7无人机实时探测人体
2024-04-11
使用 YOLO 对牛栏编号进行分类
2024-04-11
YOLO-Former:YOLO与ViT握手
2024-04-11
使用 YOLOv7 和 ESRGAN 改进坑洼检测
2024-04-11
基于YOLO的动态序列匹配模型,实现高效的无覆盖图像隐写
2024-04-11
基于深度学习的综合感知与通信系统中的目标-用户关联
2024-04-11
使用基于YOLO的学习方法对农业进行实时目标检测和机器人操作
2024-04-11
YOLO-World:实时开放词汇对象检测
2024-04-11
基于YOLO的红外小目标检测范式
2024-04-11
使用YOLO v7在磁共振成像中检测肾脏
2024-04-11
YOLO-CIANNA:在无线电数据中进行深度学习的星系检测 I. 一种受YOLO启发的新型源检测方法应用于SKAO SDC1
2024-04-11
深度学习 国际象棋游戏数据集
2024-07-31
Kolektor:表面缺陷数据集
2024-07-31
C++开发实用教程最好的
2024-03-14
TA创建的收藏夹 TA关注的收藏夹
TA关注的人