YOLO实战项目模型改进
文章平均质量分 92
专栏权益1、一份深度学习源码2、免费远程部署源码3、永久chat-gpt4和chat-gpt4 Turbo账号一份(原价20美元一个月)4、加微信免费答疑5、VPN加速器永久使用6、专栏内内容持续更新,永久观看,包含项目结果图8、第二份源码价格半价
优惠券已抵扣
余额抵扣
还需支付
¥199.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
人工智能_SYBH
专注于项目实战开发,讲解,高校老师/讲师/同行合作。以及产品测评宣传、工具推广等合作。全网粉丝10万+,掘金/知乎/华为云/阿里云/51CTO等平台优质创作者。
展开
-
YOLOv5模型优化&性能提升&实战项目 专栏介绍
订阅专栏后,私信发一下微信号和订阅截图。永久chat-gpt4和chat-gpt4 Turbo账号一份(原价20美元一个月)原创 2024-06-20 09:48:06 · 403 阅读 · 1 评论 -
YOLOv7改进策略|实战应用案例|CrowdHuman+YOLOv7学生课堂行为分析,准确率达到85.6%
近年来,⾏为检测技术[1]已成为分析课堂视频中学⽣⾏为 的重要⼯具(图1)。这项技术可以帮助教师、管理⼈员、学 ⽣和家⻓了解课堂动态和学习表现。传统的教学模式很难依 靠对少数学⽣的观察来监控每个学⽣的进步。同样,管理者 和家⻓依靠有限的信息来评估教育质量。利⽤⾏为检测技术 准确分析学⽣⾏为,可以为教育教学提供更全⾯、更准确的 反馈。学⽣课堂⾏为数据集和⽅法 现有的学⽣课堂⾏为检测算法 ⼤致可分为三类:基于视频动作识别的算法[2]、基于姿势 估计的算法[3]和基于⽬标检测的算法[4]。原创 2024-05-30 17:27:55 · 1331 阅读 · 0 评论 -
YOLOv7改进策略|YOLOv7血细胞检测、YOLOV7 和 CNN-SWIN 变压器改进,分别别实现了 92.7、95.6 和 91.1 准确率
自动血细胞检测是指在显微图像中识别不同类型的血细胞,包括 红细胞(RBC)、白细胞(WBC)、血小板等。这是病理实验室 用于诊断和治疗不同疾病的准确血细胞计数的关键过程。血细胞 检测的主要挑战是血细胞是小规模物体,传统物体检测器只能实 现次优性能。原创 2024-06-13 21:41:02 · 925 阅读 · 0 评论 -
YOLOv8改进策略|YOLO模型优化|基于区间密集连接的Swin Transformer对低质量图像的分辨率增强处理
图像超分辨率是图像处理和计算机视觉(CV)领域 的热⻔研究课题,涉及将低质量输⼊图像增强为⾼ 质量输出图像。随着深度学习、图像超分辨率神经⽹络已经开始突⻜猛 进的发展[8][51][45]。卷积神经⽹络 (CNN) [49][35] [38][37][36][36]已成为图像超分辨率的主要⽹络模 型最近⼏年。尽管CNN通过设计新的⽹络架构来提⾼ 模型性能,例如使⽤各种算法来连接卷积层[22][21 ],这种增强⽆法解决卷积核与图像之间缺乏交互内 容的问题。相同的卷积核对于不同图像的图像超分 辨率表现不佳。原创 2024-06-30 22:42:22 · 669 阅读 · 0 评论 -
YOLOv8改进策略|YOLO模型优化|使⽤ YOLOv8 算法检测⼉童⼿腕外伤 X 射线图像中的⻣折、骨折检测、骨科检测
在医院急诊室,放射科医⽣经常被要求检查⾝体各个部位(例如⼿腕和⼿臂)⻣折的患者。⻣折通常可分为开放性⻣折 和闭合性⻣折,开放性⻣折发⽣在⻣头刺穿⽪肤时,⽽闭合性⻣折发⽣在⻣头断裂但⽪肤保持完整时。在进⾏⼿术之 前,外科医⽣必须询问患者的病史并进⾏彻底的检查以诊断⻣折。在最近的医学影像中,通常使⽤三种类型的设备来诊 断⻣折,包括X射线、磁共振成像(MRI)和计算机断层扫描(CT)1。X 射线因其成本效益⽽成为使⽤最⼴泛的设备。⼉科患者⼿腕外伤的⼤部分是桡⻣远端和尺⻣⻣折2,3。原创 2024-06-30 23:07:38 · 1261 阅读 · 0 评论 -
YOLOv8改进策略|智慧医疗案例|YOLOv8脊椎骨折检测,在骨折检测方面实现了 96% 的平均精度 (mAP)
颈部是脊柱的⼀部分,是贯穿⾝体⼤部分的⻓⽽灵活的结构。颈椎或颈部区域由七块称为椎⻣的⻣头组成,这些 ⻣头被椎间盘分开,如图 1 所⽰。第三⾄第六颈椎显⽰出⼏乎相同的特征,因此被认为是该区域的典型特征。上 部两块颈椎、寰椎(C1)、轴(C2)和第七颈椎(C7)不典型。典型的颈椎(C3 ⾄ C6)具有由相对致密且坚固 的⽪质壳制成的⼩矩形体。C1的主要功能是⽀撑头部。(C2) 有⼀个⼜⼤⼜⾼的⾝体,作为向上突出的巢⽳的基 础。突出椎⻣(C7)是所有颈椎中最⼤的,具有胸椎的许多特征[1]。原创 2024-05-29 19:00:00 · 1249 阅读 · 0 评论 -
YOLOv8改进策略|实战应用案例| ⽤于检测内陆⽔道驳船交通的交通摄像头,船只检测 , YOLOv8、YOLOv5、SSD 和 EfficientDet 模型对比
驳船运输在物流业中发挥着举⾜轻重的作⽤,特别是在像美国这样拥有⼴泛河流系统的国家 [1]。驳船运输被认为是公路和铁路运输的⼀种环保替代⽅案,有助于减少碳排放[2]。驳船为运输⼤量 货物(例如煤炭、⾕物和⽯油产品)提供了⼀种⾼效且经济⾼效的⽅式[3]。与其他运输⽅式相⽐,⽔ 路驳船运输在安全性、可靠性和环境可持续性⽅⾯具有优势[4]。与船舶不同,作为驳船,监测⽔道上的驳船交通⾯临着巨⼤的挑战 牵引它们的设备通常不配备跟踪设备来监控它们的位置 [5]。原创 2024-05-27 18:45:00 · 1236 阅读 · 0 评论 -
YOLOv8改进策略|YOLO模型优化|使⽤少样本数据进⾏实时多类头盔违规检测采样技术和YOLOv8、头盔检测、实时头盔违规检测系统、安全帽检测
交通安全是全世界关注的⼀个主要问题,头盔的使⽤ 是防⽌摩托⻋事故造成头部受伤和死亡的关键因素。然 ⽽,在许多国家,违规使⽤头盔仍然是⼀个严重问题。为了检 测这种违规⾏为,已经提出并实施了各种⾃动头盔检测系 统。这些系统使⽤计算机视觉和机器学习技术(例如对象 检测、跟踪和识别)来检测和强制执⾏头盔使⽤违规⾏ 为。1,2]。尽管⽂献中已经提出了⼏种头盔检测技术,但 ⼤多数技术都⽆法实时执⾏。实时头盔检测对于交通监控 和执法⾄关重要,因为它可以让当局快速识别不戴头盔的 ⼈并采取⾏动(⻅图 1)。1)。原创 2024-06-30 23:16:10 · 1211 阅读 · 0 评论 -
YOLOv8改进策略|YOLO模型优化|YOLOv8骆驼识别、YOLO动物识别、动物保护系统。⽬标检测模型:CenterNet、EfficientDet、FasterR-CNN、SSD 和YOLOv8
野⽣动物与⻋辆碰撞(WVC)是⼀个全球性问题,对⼈类安全和野⽣动物种群构成重⼤威胁。它们可能导致司机和乘客受伤和死亡,并扰乱迁徙模式和繁殖习惯。WVC 在各⼤洲都有类似 的情况,涉及不同的物种,例如北美和欧洲的⿅、澳⼤利亚的袋⿏以及中东和北⾮ (MENA) 的 骆驼。由于⼈⼝增⻓、城市化和新道路建设,WVC 的频率在过去⼀个世纪中有所增加,并且 预计将继续增加。WVC 会造成各种损失,例如财产损失、⽣态系统⼲扰和死亡。原创 2024-06-30 22:59:21 · 770 阅读 · 0 评论 -
YOLOv8改进策略|实战应用案例|YOLOv8坑洼检测,危险路段检测
在交通系统不断发展的时代,加强交通基础设施的安全性 和效率已成为⾸要⽬标。强降⾬、道路维护不⾜以及发⽣⾃ 然灾害的可能性等因素凸显了快速有效的道路危险检测的迫 切需要。坑洼、下⽔道盖和⼈孔对驾⻋者和⾏⼈构成重⼤威 胁,每年导致约 4,800 起 [1] 事故,并因⻋辆损坏和相关费⽤ 给公共资源带来巨⼤的经济负担。坑洼的崎岖轮廓有可能造 成⼀系列损坏,从轮胎撕裂到撞击时轮辋完整性受损,从⽽ 带来可能导致致命后果的⻛险。原创 2024-05-30 17:17:18 · 950 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5开放式手术工具分类及手使用多摄像头系统的利用、手术工具分类识别
记录手术室内及手术部位周围的活动会对护理的提供产生巨大影响。记录的数据 可用于手术教育、相位识别[1]、工作流程分析[2]、错误分析[3], 技能考核 [4,5 ],以及视频摘要[6]。估计对象的位置、大小和分类的过程称为对象检测。工具和 手检测以及识别每只手上有哪些工具是分析手术视频数据所需的基本任务。[7,8 ]。通常,在微创手术 (MIS) 中始终存在一台内置摄像头。相机充当外科医生的眼 睛,由决定位置和视野的外科医生主动移动。因此,大多数时候摄像机聚焦在手 术工作区域。原创 2024-06-17 22:58:11 · 844 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5遥感图像超分辨率和目标检测 、车辆检测、船只检测、行人检测、飞机检测
与此同时,加州大学默塞德分校 (Y. Yang & Newsam,2010)和 NWPU-RESISC45(Cheng 等人,2017a)数据集促进了 场景分类,而 ISPRS Vaihingen (Rottensteiner et al., 2012) 和 38-Cloud 数据集(Mohajerani et al., 2018)为深度学习模型的开发奠定了道路 遥感图像语义分割。然而,缺点 是它包含一些小尺寸的物体,这些物体没有标记,因为它们的尺寸只是一个 几个像素(例如,⻋辆类别)。原创 2024-06-17 22:51:12 · 1043 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|基于深度的绝对距离预测 学习物体检测和单目深度估计模型
为了实现完全自动驾驶和导航,主要挑战之一是实现可靠且准确的障碍物检测。人们 提出了许多工作来解决障碍物检测问题[1]。物体检测和距离预测被有效地应用于各 种不同的领域,例如工业机器人[2]、研究机器人[3]、自动驾驶汽⻋[4]等。关于物体 检测,为了成功地在环境中导航,移动系统必须了解其附近的物体。在许多可用于物 体检测的传感器(例如激光雷达传感器)中,我们主要对基于摄像头的室内/室外导 航视觉感兴趣。因此,基于对象识别的相机是指用于识别数码照片中的对象的相关任 务的集合。原创 2024-06-17 22:43:14 · 853 阅读 · 2 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5深度训练使用新损失函数进行物体检测、⻣髓细胞识别、血液疾病监测
⻓期以来,⻣髓细胞形态学检查一直是诊断血液疾病 的重要工具。但目前仍主要依赖于有经验医生的主观诊断,没有客 观的量化标准。因此,研究鲁棒的⻣髓细胞检测算法对于定量自动 分析系统至关重要。目前,由于⻣髓涂片中细胞分布密集、细胞类 别多样,导致⻣髓细胞的检测困难。现有的⻣髓细胞检测算法对于 ⻣髓涂片自动分析系统来说还存在不足。本文提出了一种基于 YOLOv5 网络的⻣髓细胞检测算法,通过最小化新型损失函数进行 训练。⻣髓细胞检测任务的分类方法是所提出的新型损失函数的基 础。原创 2024-06-17 22:18:28 · 1157 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|机器人最佳相关对象搜索、定位目标物体
对象搜索是许多应用中机器人的一项基本功能,包括家 庭服务[1,2], 搜寻及救援 [3,4]、老年护理[5,6]。在现实环 境中,正在搜索的物体(例如胡椒瓶)通常很小,位于当 前视野之外,并且难以检测。在这样的设置下,相关信息 可能具有至关重要的价值。具体来说,假设机器人配备了 关于物体类型相对空间位置的先验知识(例如,炉子往往 靠近胡椒瓶)。然后,它可以利用这些信息作为强大的启 发式方法来缩小或“集中”搜索空间,首先定位与目标对 象高度相关的更容易检测的对象(图 1)。1)。原创 2024-06-17 22:09:39 · 785 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|空间自动空中动物检测分辨率条件多种多样、动物检测、小目标检测
来自远程平台的自动牲畜计数和定位正在成为农⺠了解放牧模式、跟踪牛群健 康状况并为围场管理策略提供信息的重要工具(巴⻉多等人。,2019年;邵等人。, 2020年;王等人。,2020年)。在澳大利亚大型肉牛养殖场,召集成本是影响生产效 率的一个重要因素,而牛的地理分布范围广阔,这使得情况变得更加复杂。⻜机用 于计数和集合,但燃料和⻜行员时间都浪费在大面积寻找动物或牛群上。首先使用 卫星或高空无人机定位牛可以直接召集工作,节省时间和金钱,同时提高⻜行员的 安全。这需要将个体牛定位在不同的环境中。原创 2024-06-17 21:59:19 · 941 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|使用单摄像头进行 3D 交通监控、车辆检测、车道线检测、车牌检测、行人检测
订阅专栏后私信(留下联系方式)获取完整源码+远程部署计算机视觉在智能交通系统(ITS)和交通监控中发挥了重要作用。随着自动驾驶汽⻋的快速增⻓和拥挤的城市,使用视频监控基础设施的自动化和先 进的交通管理系统(ATMS)已经通过深度神经网络的实施而发展。在这项研究中,我们提供了一个实用的实时交通监控平台,包括 3D ⻋辆/行人检 测、速度检测、轨迹估计、拥堵检测以及监控⻋辆和行人的交互,所有这些都使用单个闭路电视交通摄像头。我们采用定制的 YOLOv5 深度神经网络 模型进行⻋辆/行人检测和增强的 SORT 跟原创 2024-06-17 21:40:58 · 1263 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|基于 Transformer 预测头改进的 YOLOv5 无人机捕获场景中的物体检测、车辆检测、行人检测、船只检测、无人机检测、飞机检测、鸟类检测、小物体检测
无人机捕获场景的目标检测技术已广泛应用于许多实 际应用中,例如植物保护[18, 41]、野生动物保护[23, 22] 和城市监控[1, 15]。在本文中,我们重点关注改进提高无人机捕获图像上的物体检测性能,并为上述众多应 用提供⻅解。近年来,使用深度卷积神经网络的物体检测任务取得 了重大进展[40,37,34,27,58]。一些著名的基准数据集, 例如 MS COCO [30] 和 PASCALVOC [9]促进物体检测应用的发展。然而,之前的大多数深度卷积 神经网络都是针对自然场景图像而设计的。原创 2024-06-16 22:39:13 · 1173 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5交通异常检测、车辆识别、车牌识别、行人识别、车道线识别.准确率 0.9302
交通异常检测作为智能交通系统的关键组成部分之一,随着 监控摄像头的广泛使用而受到越来越多的关注。借助异常检 测,交通管理可以响应紧急情况并做出即时决策,例如路线 重新规划和医疗资源分配。承认城市地区安装了越来越多的 摄像头,但这些设备收集的数据中只有少数得到处理和响 应。这是因为有限的人力监测资源与海量的收集数据之间的 极不平衡的情况。因此,迫切需要一种具有高泛化性和高效 率的异常检测框架来应对这一困境。原创 2024-06-16 22:27:17 · 830 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5仙人掌病害分析系统、病害检测、病害识别.准确率为 0.9852
尽管仙人掌在历史上被认为是一种害虫,但人们对仙人掌种植的兴趣日益浓厚[1 ] 因为仙人 掌不需要太多的生⻓空间,很容易生⻓并且可以在各种环境条件下生⻓。仙人掌有广泛的用 途[2 ] 来自用于废水处理的环保材料 [3 ],⻝物来源[4 ],一种药用⻝品[5 ] 和特定药理用途 [6 】,但仙人掌本身却容易罹患多种疾病【7 ]。仙人掌病可能是一个严重的问题,如果及时诊 断,通常可以得到治疗。发现的大部分疾病仙人掌有真菌病(例如炭疽病[8 ] 是由真菌炭疽病引起的)尽管溃疡病和腐烂[9 ]。原创 2024-06-16 22:20:57 · 1047 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5人脸检测、人脸识别、人脸检测,准确率94.27-96.06%
人脸检测是一项非常重要的计算机视觉任务。自从深度学 习,特别是卷积神经网络(CNN)被用于这项任务以来,已 经取得了巨大的进展。作为人脸识别、验证、跟踪、对⻬、 表情分析等许多任务的第一步,人脸检测吸引了学术界和工 业界的许多研究和开发。多年来,人脸检测的性能有了显着 提高。有关人脸检测的调查,请参考基准测试结果[1],[2]。这个领域有很多方法,从不同的⻆度来看。研究方向包括 CNN网络的设计、损失函数、数据增强和训练策略。原创 2024-06-16 22:14:12 · 1121 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5深度学习钢管焊缝缺陷检测、焊缝缺陷检测、焊缝缺陷识别、焊接缺陷检测.准确率达到97.8%
钢管广泛应用于石油、 化工、天然气、⻚岩气等,如果钢管存在缺陷,会导致 造成严重的不良后果。随着我国钢管需求量的不断增⻓,更多 越来越多的企业甚至国家开始关注质量和 钢管性能及钢材缺陷检测评价技术 管道已成为研究人员热衷的研究课题。目前,有 手动测试和X射线测试。X射线检测是工业检测的主要方法之一 无损检测(NDT),检测结果已作为重要依据 用于焊缝的缺陷分析和质量评估。X射线检测可以有效 检测钢管内部缺陷,但仍需人工参与确定钢管焊缝缺陷的类型和位置(Yun et al. 2009)。原创 2024-06-16 22:05:31 · 1231 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5深度学习和决策树的基于视觉的交通异常检测系统
摄像机等消费级技术的进步极大地改善了交通监控系统。近年来,各个国家交通管理中心(TMC)依靠实时闭路电 视录像来协调各种高速公路交通事件并做出适当的反应。然而,当前一代的交通监控系统的维护成本很高,因为它 们是手动操作的。缺乏自动化还导致事件检测率低和响应 时间低。来自交通监控系统的数据的大小、分辨率和速度 也可能让交通运营商难以承受。因此,需要开发可扩展的 应用程序,能够快速从摄像头获取交通状况数据,并提取 与协调和响应交通事件或异常相关的信息。原创 2024-06-16 21:56:47 · 1143 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5动物检测、动物分类、动物识别、野生动物识别.准确率提升到了85%.
为了保护和管理不同的哺乳动物群落,确保其种群状况并最大限度地减少与人类的冲突,首先 需要从数据中获取有关其状况的全面知识。人们越来越认识到标准野生动物监测方法并不有效 且难以扩大规模(例如雪地追踪或狩猎袋数据)。因此,目前欧洲各地正在制定许多使用相机 陷阱监控哺乳动物的新举措,共同产生了大量的图片和视频。然而,大量可用数据没有得到有 效利用,主要是因为需要花费人力从收集的原始多媒体文件中挖掘数据。相机陷阱已被证明是野生动物保护和生态研究中最重要的技术之一[1-5]。原创 2024-06-16 21:45:18 · 1182 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLO道路损坏检测、 CNN 模型道路检测
ImageNet [3] 挑战加速了目标检测 任务,到 2015 年超过了人类的能力。这项工作的目标是评估 对象检测方法并进行实验,以训练具有最准确和可泛化架构 的损坏检测模型。我们在本文中实现了以下目标。· 预处理以实现准确检测· 训练一个可以跨国家转移的通用模型。将其与每个国家/地区的专用模型方法进行对比。· 实验和评估单级和多级物体检测器以实现准确检测 · 评估各种模型的进度、超参数和准确性以下部分描述了获得报告分数的数据、实验和分析。原创 2024-06-16 21:13:30 · 720 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|Slowfast 和 YOLOv5 检测器 自动驾驶、车辆识别、车牌识别、车道识别、行人识别
全面的,122K从 22 个视频中提取的帧被标记,包括 AV 自身的 动作(附加到整个帧)和附加了三种类型中每一种的一个或多个 标签的边界框:代理、动作、位置。总共,ROAD 包括第560章 K边界框与1。7中号 各个标签的实例。后一个图可以分解为第 560章K代理标签的实例,640K动作标签的实例,以及第499章 K位置标签的实例。根据手动分配的各个标签,我们可以识别 603K双工(代理操作)标签的实例和 第454章K三元组的实例 (事件标签)。原创 2024-06-16 20:53:30 · 1003 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5微观结构中识别出孔隙、粉末颗 粒或 GB 等缺陷
在过去的十年中,金属材料的增材制造已应用于航空航天火箭部件、汽⻋部件、生物医学 设备和基础设施部件[1-4]。增材制造 (AM) 部件的微观结构决定了其机械性能,与制造工艺本 身有着内在的联系。例如,粉末的尺寸分布和形貌颗粒对于使用粉末床熔融 (PBF) 制造的部件的机械性能起着重要作用。这些粉末颗粒不仅会导 致导热性和能量吸收的变化,还会影响最终构建部件的孔隙率、表面粗糙度、硬度和强度 [5, 6]。此外,制造过程中的缺陷(例如凝固过程中截留的惰性气体)可能会导致更高的孔隙率。原创 2024-06-16 19:53:56 · 1128 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5人物检测、特征提取和身份比对.识别率达到93.6%
人物搜索[31]主要用于确定图像或视频序列中是否存在特定人物。近年来,它在 计算机视觉领域,尤其是智能视频监控和智能安防领域引起了广泛关注。在实际 应用中,人物搜索可以分为两个任务:人物检测和人物重新识别。其过程是,检 测是重新识别的前提,两者缺一不可有效存在。然而,大多数学者只研究人物重 识别[36,23,9]。他们的成果很难在实际应用中实现。此外,虽然有学者提出了结 合两个任务的端到端网络[28,17,10],但由于检测精度会影响识别精度,精度相对 较低。原创 2024-06-16 19:40:32 · 920 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化| YOLOv5损伤分析、金属间化合物 Mg-Al-Ca 复合材料损伤形成的 速率依赖性
许多高性能合金由两个或多个相组成,以结合并改善其在微结构复合材料中各自的性能。在轻质镁 合金中,具有金属间化合物⻣架的铸造微观结构已被证明具有优异的抗蠕变性,特别是在高温下 [1-3]。另一方面,金属间化合物的存在自然会导致拉伸伸⻓率下降,因为存在 Mg17 号铝12和钙 (镁,铝)2Laves 相又硬又脆,特别是在其熔化温度约三分之二以下时 [4-11]。由于低温和高温状 态(即室温和 150 °C 左右及以上的温度)在应用中都很重要,因此需要了解潜在的变形和损坏机 制及其热激活。原创 2024-06-15 23:00:12 · 1441 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|基于YOLOv5智慧课堂中的学习行为识别
近年来,随着云课堂、网络课堂的大量使用,以及智慧课 堂成为国家重点发展工程,记录和识别学生课堂表现的需求 日益增加。教育界已经有很多研究通过学生的动作和行为表 现来预测和判断学生未来在课堂上的表现和成就。传统上, 教师在课堂上维持纪律并手动记录学生在课堂上的表现。这种方法效率低下,无法 提供课堂的整体视图,并且很容易受到教师主观性的影响。如今,利用计算机视觉技术识别学生在课堂上的状态已成为 建设智慧教室的重要技术基础[1]。原创 2024-06-15 22:46:26 · 869 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5小物体检测,车辆检测、行人检测、船只检测、飞机检测
小物体检测([1]、[2]、[3]、[4]、[5])⻓期以来一直是物体检测中的一个挑战,其目标是准确地检测小物体(小 于 32 像素 x 32 像素的物体)图像中的视觉特征很少。You Only Look One-level Feature (YOLOF) [6] 提出了一 种由主干网络、编码器和解码器组成的检测模型。YOLOF中提出,通过选择正确的尺度特征将多输入和单输出输 出到特定级别,可以获得与多输入和多输出相当的性能。在小目标检测任务中,本文提出了一种多输入单输出模 块,以高分辨率输出低级特征。原创 2024-06-15 22:24:48 · 1222 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化| YOLOv5口罩检测、自动检测面部是否有口罩.模型优化,准确率提高到95%-97%.
由于冠状病毒在世界范围内大流行的出现,戴口罩不再是什么新鲜事,不仅是在这种疾病的情况下。许多解决方 案都是基于评估是否佩戴口罩——这在流行病学限制适用时至关重要,例如在监控建筑物和医院的入口时。戴口 罩可以减少疾病的传播,包括新冠肺炎、流感等。机器学习算法,特别是深度学习,可用于解决分类问题——确定是否佩戴口罩。在[1]中,作者提出了一种 Deep Masknet 模型,可用于检测人脸上的面具(实际上执行二元分类:“面具”、“无面具”)。原创 2024-06-15 22:12:13 · 760 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|使用 YOLOv5 和集成学习进行实时头盔违规检测、头盔检测.模型优化
摩托⻋相关伤害是全球交通相关死亡的主要原因之 一。1994年,据估计摩托⻋发生致命事故的可能性是乘 用⻋的11倍,到2007年增加到27.5倍[1]。严重的钝器外 伤是摩托⻋事故中死亡的主要原因,它会对骑乘者的身体 造成内外部损伤。这种创伤通常会导致头部、颈部、胸部 和身体中轴⻣骼系统其他部位受伤。1]。佩戴头盔可以减 少此类伤害的可能性。大量医学和非医学研究发现,使用 头盔可以在降低摩托⻋事故造成的伤害和死亡严重程度方 面发挥重要作用。原创 2024-06-15 21:39:13 · 686 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化| YOLOv5头盔检测、骑电车是否戴头盔检测.精确度、召回率和 mAP 分数分别为 0.848、0.599 和 0.641
摩托⻋事故对骑手和乘客构成重大威胁,其中头部受伤是此 类事故中最常⻅和致命的伤害类型。骑摩托⻋时戴头盔已被 证明可以减少严重头部受伤和死亡的⻛险显着增加。然而,尽管佩戴头盔 的好处众所周知,但遵守头盔法在世界许多地区仍然是一个 重大挑战[1]。不遵守头盔法可能归因于多种因素,包括缺乏 对使用头盔重要性的认识、佩戴头盔引起的不适以及不鼓励 佩戴头盔的文化或社会规范[2]。在某些司法管辖区,头盔可 能买不起或难以获得,从而进一步加剧了这一问题。不遵守 头盔法会使骑手和乘客在事故中面临严重受伤或死亡的危 险。原创 2024-06-15 21:30:30 · 785 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化| YOLOv5农作物开花检测,花朵检测,准确度高达 81.9%
美国 (US) 特种作物产量占美国作物总价值的 30% 至 40%(USDA,2019)。但面临人工疏花劳动力短缺、 授粉蜜蜂短缺等多种挑战,对全球粮⻝安全构成重大威 胁。由于农业机器人有取代/减少人类劳动力的潜力, 因此迫切需要开发用于农业作物负荷管理的自动化和机 器人平台(Bochtis 等人,2020)。树果生产中的作物负荷管理是一种平衡行为,既减少当 前季节的作物负荷以获得所需的果实大小和质量,又为 下一季节实现充足的回报开花(Terence Robinson 和 Hoying,2016)。原创 2024-06-15 21:19:11 · 975 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化| YOLO非法物品检测、违禁品检测识别、机场安检系统、X射线违禁物自动检测,准确率提升为92.1%
使用X射线扫描行李、包裹等来检测违禁物品是确保公共安 全(例如防止恐怖袭击、打击走私非法物品等)的重要要 求。X射线是波⻓比可⻅光短的电磁波,能够穿透大多数材 料;X 射线扫描仪利用这一基本特性来筛查行李或包裹等物 品(例如,在机场、邮局/海关等处)。人类操作员能够检测 到各种潜在威胁,例如使用扫描机生成的高分辨率图像来识别爆炸物、武器或尖锐 物体 [1]。原创 2024-06-14 22:59:40 · 1400 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化|YOLOv5无人机检测识别、YOLOv5飞机检测识别、鸟类检测识别.准确率为96.2%
由于无人机应用的增⻓,无人机 (UAV) 在遥感和高级监视 应用中得到广泛采用。根据行业洞察,到 2026 年,全球无 人机市场预计将达到 480 亿美元[1]。由于其灵活性和移动 性,无人机在许多日常和工业应用中被广泛考虑,并且在配 备先进的人工智能(AI)技术时,其能力得到进一步增强。这一进步及其日益广泛的使用引起了人们对公共场所安全的 严重担忧,因为我们已经看到了无人机对基础设施造成损害 的多起实例[2][3]。因此,有效的检测系统对于防止恶意活动 是必要的[4]。原创 2024-06-14 22:51:48 · 1132 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化| 基于密集通道压缩的目标检测 用于特征空间固化
在YOLO系列算法的⻣干网络中,无论YOLOv4、YOLOv5和 YOLOX中采用的CSPNet结构,还是YOLOv7中采用的ELAN结 构,最关键的组成部分都是瓶颈结构[18],如图1所示。在主干网络中,有很多创新的结构,例如 YOLOv3[35]中的Darknet-53、YOLOv4[3]中的Modified CSP、 YOLOv5[8]和YOLOX[11]中的Modified CSP v5以及Elan[42], YOLOv7[40]中的VoVNet[23]、CSPVoVNet[39]。原创 2024-06-14 22:41:31 · 612 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化| YOLOv5智能家居设备检测.准确率95.13%
随着智能家居设备的不断普及,人们对更高的性能和更好的用戶体验的要求越来越 高,为了满足这些期望,人机交互技术在智能家居领域的应用变得至关重要。该技 术提供准确、自然、便捷的交互,提高设备的可用性和易用性。此外,它还使智能 家居设备能够更好地了解用戶的需求和意图,提供智能、高效和个性化的服务,最 终提高他们的生活质量。为了提高人机交互的精准性和便捷性,计算机视觉技术对于视觉检测至关重要。在用戶端,检测他们的行为和需求对于智能家居设备准确响应并提供定制服务至关 重要。原创 2024-06-14 22:36:48 · 1100 阅读 · 0 评论 -
YOLOv5改进策略|YOLO模型优化| YOLOv5棉花开花检测、植物开花检测,准确率提升到96%
由于全球人口的快速增⻓,对可持续农业的需求给农业 部⻔带来了巨大压力。由计算机视觉 (CV) 和机器学习 (ML) 支持的精准农业技术已成为有前途的解决方案,可以监测 作物健康、土壤特性和产量,并为农业可持续发展做出有 效的决策。数据将通过现场的异构传感器和设备(例如流 动站上的湿度传感器和摄像头)收集。然而,农场中连接 到互联网的大量对象导致产生大量非结构化和结构化数 据,必须以连续且易于分析的方式存储、处理和提供这些 数据(吉尔伯森和范尼科克,2017年)。原创 2024-06-14 22:31:12 · 875 阅读 · 0 评论