Python3机器学习实践:集成学习之LightGBM

本文详细介绍了LightGBM,一个由微软开发的高效分布式Gradient Boosting框架,尤其强调了其在速度、内存优化、稀疏特征处理、树的生长策略和并行学习方面的优势。LightGBM采用直方图算法,降低了计算成本和内存使用,支持多种应用和度量,如回归、分类、Lambdarank,并提供了GPU支持。
摘要由CSDN通过智能技术生成

light.png

本文为官方文档翻译,点击查看英文原版
LightGBM(Light Gradient Boosting Machine)是微软的开源分布式高性能Gradient Boosting框架,使用基于决策树的学习算法。下面介绍下此框架的优化。
1、速度、内存方面的优化

许多提升工具使用基于预排序的算法(近似直方图算法)(例如XGBoost中的默认算法)来进行决策树学习。这是一个比较简单的解决方案,但不容易优化。LightGBM使用基于直方图的算法,它将连续特征值存储到离散区间。这可以加快训练速度并减少了内存使用量。
1.1 直方图算法的优点

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AnFany

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值