TensorRT的安装
首先根据自己的CUDA版本去英伟达官网下载对应的TensorRT安装包
官网地址:https://developer.nvidia.com/nvidia-tensorrt-download
简单的注册,填写一些问题之后就可以下载了。
根据操作系统的不同,自行选择ubantu,centos,windows版本的安装包哦
对于要将tensorrt安装在anaconda环境中的需求。我这边是centos7系统。以下是安装流程:
-
选择tar.gz后缀的安装包来下载。
-
上传至linux系统某目录下 /home/test/
-
选择一个目录进行解压: tar -zxvf name.tar.gz
-
进入解压后的目录: cd TensorRT-5.1.5.0
-
在python目录下找到与自身python版本对应的.whl后缀文件。
-
使用pip 进行安装即可。
-
后面可以在envs/环境名/lib/site-packages中查看到;
对于win10系统的Tensorrt的安装。
-
选择.zip后缀的安装包来下载。
-
解压之后进入到目录下
-
进入到lib中,将里面所有的dll后缀文件复制到cuda根目录下的/bin文件中。路径一般都是
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin -
用Visual Studio2019打开TensorRT-5.1.5.0\samples\sampleMNIST\目录下的sample_mnist.sln文件。
-
在项目->属性中修改参数
VC++目录 -> 常规 -> 可执行文件目录
C/C++ -> 常规 -> 附加包含目录
上面两项编辑添加 :root_path\TensorRT-5.1.5.0\lib
链接器 -> 输入 -> 附加依赖项
这里编辑添加: root_path\TensorRT-5.1.5.0\lib\nvinfer.lib -
生成解决方案。
-
在TensorRT-5.1.5.0\bin目录下可以看到sample_mnist.exe文件,双击执行。
-
执行结果。
报这种错是因为cuda的问题,不是版本的问题,是要再下载一个更新包。地址如下:
https://developer.nvidia.com/cuda-10.1-download-archive-update1
直接安装就行,安装之后,要记得重复步骤3去将dll文件复制过去。
完成上述步骤之后,再双击sample_mnist.exe文件即可运行成功。
出现这张图就代表MNIST字体识别测试成功。
对于win10系统的Tensorrt的使用。
在root_path\bin目录下还有一个文件,trtexec.exe。
以静态输入形状的全维模式运行 ONNX 模型:
.\trtexec.exe --onnx=JDE.onnx
用onnx模型生成trt。
.\trtexec.exe --onnx=JDE.onnx --saveEngine=JDE.trt
在linux系统上导入tensorrt包报错,主要原因
版本不对,要查询号自己系统上CUDA和cudnn的版本,选择正确的安装包才行。
再有就是有些低版本的tensorrt不支持py3.x版本,需要更改为python2才行。
使用tensorrt构建engine时报错NoneType’ object has no attribute 'serialize,
如果确认不是版本或者环境的错误,那有可能是不支持FP16。需要将原来的
改为False。