tensorrt安装与使用踩坑

首先根据自己的CUDA版本去英伟达官网下载对应的TensorRT安装包

官网地址:https://developer.nvidia.com/nvidia-tensorrt-download
简单的注册,填写一些问题之后就可以下载了。

根据操作系统的不同,自行选择ubantu,centos,windows版本的安装包哦

对于要将tensorrt安装在anaconda环境中的需求。我这边是centos7系统。以下是安装流程:

  1. 选择tar.gz后缀的安装包来下载。在这里插入图片描述

  2. 上传至linux系统某目录下 /home/test/

  3. 选择一个目录进行解压: tar -zxvf name.tar.gz

  4. 进入解压后的目录: cd TensorRT-5.1.5.0

  5. 在python目录下找到与自身python版本对应的.whl后缀文件。在这里插入图片描述

  6. 使用pip 进行安装即可。在这里插入图片描述

  7. 后面可以在envs/环境名/lib/site-packages中查看到;

对于win10系统的Tensorrt的安装。

  1. 选择.zip后缀的安装包来下载。

  2. 解压之后进入到目录下在这里插入图片描述

  3. 进入到lib中,将里面所有的dll后缀文件复制到cuda根目录下的/bin文件中。路径一般都是
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin

  4. 用Visual Studio2019打开TensorRT-5.1.5.0\samples\sampleMNIST\目录下的sample_mnist.sln文件。

  5. 在项目->属性中修改参数
    VC++目录 -> 常规 -> 可执行文件目录
    C/C++ -> 常规 -> 附加包含目录
    上面两项编辑添加 :root_path\TensorRT-5.1.5.0\lib
    链接器 -> 输入 -> 附加依赖项
    这里编辑添加: root_path\TensorRT-5.1.5.0\lib\nvinfer.lib

  6. 生成解决方案。在这里插入图片描述

  7. 在TensorRT-5.1.5.0\bin目录下可以看到sample_mnist.exe文件,双击执行。

  8. 执行结果。
    在这里插入图片描述
    报这种错是因为cuda的问题,不是版本的问题,是要再下载一个更新包。地址如下:
    https://developer.nvidia.com/cuda-10.1-download-archive-update1
    直接安装就行,安装之后,要记得重复步骤3去将dll文件复制过去。
    完成上述步骤之后,再双击sample_mnist.exe文件即可运行成功。
    在这里插入图片描述
    出现这张图就代表MNIST字体识别测试成功。

对于win10系统的Tensorrt的使用。

在root_path\bin目录下还有一个文件,trtexec.exe
以静态输入形状的全维模式运行 ONNX 模型:

.\trtexec.exe --onnx=JDE.onnx

用onnx模型生成trt。

.\trtexec.exe --onnx=JDE.onnx --saveEngine=JDE.trt

在linux系统上导入tensorrt包报错,主要原因

版本不对,要查询号自己系统上CUDA和cudnn的版本,选择正确的安装包才行。
再有就是有些低版本的tensorrt不支持py3.x版本,需要更改为python2才行。

使用tensorrt构建engine时报错NoneType’ object has no attribute 'serialize,

如果确认不是版本或者环境的错误,那有可能是不支持FP16。需要将原来的
在这里插入图片描述
改为False。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值