HDU - 相遇周期
而卫星是进行这些探测的重要工具,我们的问题是已知两颗卫星的运行周期,求它们的相遇周期。
Input
输入数据的第一行为一个正整数T, 表示测试数据的组数. 然后是T组测试数据. 每组测试数据包含两组正整数,用空格隔开。每组包含两个正整数,表示转n圈需要的天数(26501/6335,表示转26501圈要6335天),用’/'隔开。
Output
对于每组测试数据, 输出它们的相遇周期,如果相遇周期是整数则用整数表示,否则用最简分数表示。
Sample Input
2
26501/6335 18468/42
29359/11479 15725/19170
Sample Output
81570078/7
5431415
#include <stdio.h>
#define ll long long
ll gcd(ll m,ll n)//最大公因数
{
ll t;
if(m<n)
{
t=m;
m=n;
n=t;
}
while(n>0)
{
t=m;
m=n;
n=t%n;
}
return m;
}
ll lcm(ll m,ll n)//最小公倍数
{
return m*n/gcd(m,n);
}
int main()
{
int T;
ll a,b,c,d,x,y;
scanf("%d",&T);
while(T--)
{
scanf("%lld/%lld %lld/%lld",&a,&b,&c,&d);
x=gcd(a,b);y=gcd(c,d);//约分
a/=x;b/=x;
c/=y;d/=y;
if(gcd(b,d)==1)
{
printf("%lld\n",lcm(a,c));
}
else
{
printf("%lld/%lld\n",lcm(a,c),gcd(b,d));
}
}
return 0;
}
大佬的简便写法(看不大懂)
LL gcd(LL a, LL b) {
return b ? gcd(b, a % b) : a;
}
LL lcm(LL a, LL b) {
return a / gcd(a, b) * b;
}
但是 数量级相当大(千位级别的运算)的时候似乎上面的算法执行效率并不是想象中那么快速,所以有了如下的快速GCD算法,其原理是:更相减损法,当传入的参数a和b均为偶数时,我们吧a和b全部右移(>>),然后在结尾乘2(<<),如果一个奇数,一个偶数的话我们很容易想到,2肯定不会是这两个数的公约数,所以我们把偶数右移两位(>>), 如果两个数都是奇数的话,我们就令他们进行相减,然后再把a和b取最小的传入,就会出现一奇一偶的两个数即可进行下一步的运算; 算法C++实现如下:
int qGCD(int a, int b)
{
if(a == 0) return b;
if(b == 0) return a;
if(!(a & 1) && !(b & 1)) // a % 2 == 0 && b % 2 == 0;
return qGCD(a >> 1, b >> 1) << 1;
else if(!(b & 1))
return qGCD(a, b >> 1);
else if(!(a & 1))
return qGCD(a >> 1, b);
else
return qGCD(abs(a - b), min(a, b));
}
原文:https://blog.csdn.net/m0_38081836/article/details/78053715