HDU - 相遇周期(gcd,lcm)

HDU - 相遇周期
而卫星是进行这些探测的重要工具,我们的问题是已知两颗卫星的运行周期,求它们的相遇周期。
Input
输入数据的第一行为一个正整数T, 表示测试数据的组数. 然后是T组测试数据. 每组测试数据包含两组正整数,用空格隔开。每组包含两个正整数,表示转n圈需要的天数(26501/6335,表示转26501圈要6335天),用’/'隔开。
Output
对于每组测试数据, 输出它们的相遇周期,如果相遇周期是整数则用整数表示,否则用最简分数表示。
Sample Input
2
26501/6335 18468/42
29359/11479 15725/19170
Sample Output
81570078/7
5431415

#include <stdio.h>
#define ll long long
ll gcd(ll m,ll n)//最大公因数
{
    ll t;
    if(m<n)
    {
        t=m;
        m=n;
        n=t;
    }
    while(n>0)
    {
        t=m;
        m=n;
        n=t%n;
    }
    return m;
}
ll lcm(ll m,ll n)//最小公倍数
{
    return m*n/gcd(m,n);
}
int main()
{
    int T;
    ll a,b,c,d,x,y;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld/%lld %lld/%lld",&a,&b,&c,&d);
        x=gcd(a,b);y=gcd(c,d);//约分
        a/=x;b/=x;
        c/=y;d/=y;
        if(gcd(b,d)==1)
        {
            printf("%lld\n",lcm(a,c));
        }
        else
        {
            printf("%lld/%lld\n",lcm(a,c),gcd(b,d));
        }
    }
    return 0;
}

大佬的简便写法(看不大懂)

LL gcd(LL a, LL b) {
	return b ? gcd(b, a % b) : a;
}
LL lcm(LL a, LL b) {
	return a / gcd(a, b) * b;
}

但是 数量级相当大(千位级别的运算)的时候似乎上面的算法执行效率并不是想象中那么快速,所以有了如下的快速GCD算法,其原理是:更相减损法,当传入的参数a和b均为偶数时,我们吧a和b全部右移(>>),然后在结尾乘2(<<),如果一个奇数,一个偶数的话我们很容易想到,2肯定不会是这两个数的公约数,所以我们把偶数右移两位(>>), 如果两个数都是奇数的话,我们就令他们进行相减,然后再把a和b取最小的传入,就会出现一奇一偶的两个数即可进行下一步的运算; 算法C++实现如下:

int qGCD(int a, int b)
{
	if(a == 0) return b;
	if(b == 0) return a;
	if(!(a & 1) && !(b & 1)) // a % 2 == 0 && b % 2 == 0;
		return qGCD(a >> 1, b >> 1) << 1;
	else if(!(b & 1))
		return qGCD(a, b >> 1);
	else if(!(a & 1))
		return qGCD(a >> 1, b);
	else
		return qGCD(abs(a - b), min(a, b));
}

原文:https://blog.csdn.net/m0_38081836/article/details/78053715

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值