自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 收藏
  • 关注

原创 【机器学习(十三)】机器学习回归案例之股票价格预测分析—Sentosa_DSML社区版

相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。

2024-10-12 09:02:51 943

原创 【机器学习(十二)】机器学习回归案例之二手汽车价格预测—XGBoost回归算法—Sentosa_DSML社区版

关于XGBoost的算法原理,已经进行了介绍与总结,相关内容可参考【机器学习(一)】分类和回归任务-XGBoost算法-Sentosa_DSML社区版一文。本文以预测二手车的交易价格为目标,通过Python代码和Sentosa_DSML社区版分别实现构建XGBoost回归预测模型,并对模型进行评估,包括评估指标的选择与分析。最后得出实验结论,确保模型在二手汽车价格回归预测中的有效性和准确性。数据集介绍。

2024-10-08 08:44:01 859

原创 【机器学习(十一)】糖尿病数据集分类预测案例分析—XGBoost分类算法—Sentosa_DSML社区版

相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。

2024-09-30 08:57:18 849

原创 【机器学习(十)】时间序列—Holt-Winters方法—Sentosa_DSML社区版

相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。

2024-09-30 08:57:03 565

原创 【机器学习(九)】分类和回归任务-多层感知机 (MLP) -Sentosa_DSML社区版

相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。

2024-09-29 09:10:16 1063

原创 【机器学习(八)】分类和回归任务-因子分解机(Factorization Machines,FM)-Sentosa_DSML社区版

相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。

2024-09-29 09:10:06 1260

原创 【机器学习(七)】分类和回归任务-K-近邻 (KNN)算法-Sentosa_DSML社区版

相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。

2024-09-27 08:32:04 1185

原创 【机器学习(六)】分类和回归任务-LightGBM算法-Sentosa_DSML社区版

相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。

2024-09-27 08:31:14 741

原创 【机器学习(五)】分类和回归任务-AdaBoost算法

相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。

2024-09-26 16:34:22 1381

原创 【机器学习(四)】分类和回归任务-梯度提升决策树(GBDT)-Sentosa_DSML社区版

相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。

2024-09-26 16:32:42 340

原创 【机器学习(三)】分类和回归任务-随机森林-Sentosa_DSML社区版

文章目录一、算法概念二、算法原理(一)定义(二)袋外数据三、随机森林的优缺点(一)优点(二)缺点四、随机森林分类任务实现对比(一)数据加载1、Python代码2、Sentosa_DSML社区版(二)样本分区1、Python代码2、Sentosa_DSML社区版(三)模型训练1、Python代码2、Sentosa_DSML社区版(四)模型评估1、Python代码2、Sentosa_DSML社区版(五)模型可视化1、Python代码2、Sentosa_DSML社区版五、随机森林回归任务实现对比(一)数据加载、样

2024-09-11 10:04:11 923

原创 【机器学习(二)】分类和回归任务-决策树算法-Sentosa_DSML社区版

相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。

2024-09-10 15:12:16 1228

原创 【机器学习(一)】分类和回归任务-XGBoost算法-Sentosa_DSML社区版

相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。

2024-09-09 18:54:29 834

原创 SQL学习笔记(二)窗口函数

允许对查询结果的某个“窗口”进行计算。与聚合函数不同,窗口函数不会将多行结果压缩成一行,而是为每行返回一个值。它通常用于在不改变原始行数的情况下进行排名、累计和滑动平均等操作。

2024-09-02 15:21:18 899

原创 【论文阅读】Seq2SQL: 使用强化学习从自然语言生成结构化查询

除了模型之外,我们还发布了WikiSQL,这是一个80654个手工注释的问题和SQL查询示例的数据集,分布在维基百科的24241个表中,比可比数据集大一个数量级。在WikiSQL数据集上,Seq2SQL优于Dong先前最先进的语义解析模型,得到35.9%的执行精度,以及一个增强的指针网络基线,得到53.3%的执行精度。通过利用SQL查询的固有结构和使用实时查询执行的奖励信号应用策略梯度方法,Seq2SQL在WikiSQL上实现了最先进的性能,获得了59.4%的执行精度。模型将问题和表的列作为输入。

2024-08-30 16:56:42 774

原创 SQL学习笔记(一)排序和求众数

3、dense_rank() over(partition by col1 order by col2):但若有并列的名称,不会占用下一名次的,则序号从1到n连续。如果有两个人都排在第3名,则下一名还是第4名。2、rank() over(partition by col1 order by col2):但若有并列的名称,会占用下一名次的,则序号从1到n不连续。窗口函数(count() over(), sum() over()等)和group by的语法不同,不能混合使用。聚合-->排序desc-->过滤。

2024-08-30 10:34:56 428

原创 数据处理函数(一)

pd.concat([data1,data2],axis=1):数据合并,例:数值型变量拼接编码后特征。.transform():transform()是pandas中的转换函数,对DataFrame执行传入的函数后返回一个相同形状的DataFrame。odec = pickle.load(f):使用了pickle.load()函数加载 odec.pkl 文件。.select_dtypes(exclude=object) :排除object类型的列。pd.read_csv():读取数据。

2024-08-30 10:22:20 251

原创 【论文阅读】TranAD: Deep Transformer Networks for Anomaly Detection inMultivariate Time Series Data

多变量时间序列数据中的有效异常检测和诊断对于现代工业应用非常重要。但是,构建能够快速准确地查明异常观测结果的系统是一个具有挑战性的问题。这是由于现代应用中缺乏异常标签,数据波动性高以及超低推理时间的要求。尽管最近开发了用于异常检测的深度学习方法,但只有少数方法可以解决所有这些挑战。在本文中,我们提出了TranAD,这是一种基于深度变压器网络的异常检测和诊断模型,该模型使用基于注意力的序列编码器在了解数据中更广泛的时间趋势的情况下快速执行推理。

2022-10-20 16:36:48 3092 3

原创 【论文阅读】UI-GAN: Generative Adversarial Network-BasedAnomaly Detection

本文提出了一种用于可穿戴设备的自动跌倒检测方法,该方法可以在检测到跌倒时及时提醒护理人员,从而减少老年人的伤害。为此,我们提出了一种使用心率传感器和加速度计的新颖的基于生成对抗网络 (GAN-) 的跌倒检测方法。与正常行为数据相比,获取跌倒数据可能是一个艰巨的过程。取而代之的是,我们引入了一种引人注目的基于GAN的异常检测,部分涉及用户初始信息特征 (ui-gan)。尽管先前已经提出了基于GAN的异常检测方法,但是每种模型都有其对每种异常检测应用的充分适用性。因此,本研究首先从最近提出的九个基于GAN的模型

2022-10-20 08:25:06 595 2

原创 【论文阅读】A Hybrid Physics-Based Data-Driven Frameworkfor Anomaly Detection in IndustrialControl Systems

提出了一种称为PbNN的方法,用于通过识别基础ic的过程动态中产生的异常来检测网络物理攻击。与基于从操作数据中获取的抽象知识的现有异常检测器不同,PbNN利用ic的设计知识来学习相关组件之间的复杂关系。通过应用深度卷积神经网络,使用操作数据对此类关系进行精确建模。通过发起几次实时的隐秘和协调攻击,在运行安全的水处理厂中实施和评估了拟议的检测器。结果表明,当使用检测精度和误报率进行比较时,PbNN的性能优于现有的最先进的机器学习异常检测器。

2022-10-19 11:36:44 465 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除