结构
HashMap的结构为数组+链表+红黑树。
//对象数组
transient Node<K,V>[] table;
// 链表节点
static class Node<K,V> implements Map.Entry<K,V> {
final int hash; //哈希值
final K key; //建
V value; //值
Node<K,V> next; //下一个节点
}
//红黑树节点
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
}
HashMap使用“拉链法”解决了哈希冲突。
主要属性
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 默认初始容量为16
static final int MAXIMUM_CAPACITY = 1 << 30; //最大容量
static final float DEFAULT_LOAD_FACTOR = 0.75f; // 负载因子,默认为0.75
static final int TREEIFY_THRESHOLD = 8; //树化阈值,大于这个阈值,会将链表转化为红黑树,默认是8
关于负载因子,doc 的解释为:
默认负载因子为0.75的时候在时间和空间成本上提供了很好的折衷。太高了可以减少空间开销,但是会增加查找复杂度。我们设置负载因子尽量减少rehash的操作,但是查找元素的也要有性能保证。
主要方法
HashMap主要的三个方法为:put()、get()、resize()。
put方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
//主要逻辑在putVal()方法
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果数组为空,则先进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// i = (n - 1) & hash计算元素的下标,如果所在的桶为空,则新建一个节点
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//如果元素的key与桶的key一样,则直接覆盖
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果已经树化,则添加到红黑树中
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 都不满足,则遍历链表
for (int binCount = 0; ; ++binCount) {
// 如果已经到链尾,则新建一个节点
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//如果链表长度大于8,则进行树化。
//因为binCount是从0开始计算的,到满足下面条件时binCount为7,
//再加上上面新的节点,所以此时链表有9个节点,所以链表长度大于8才会进行树化。
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 如果存在相同key,则终止遍历
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 如果存在相同key,则覆盖
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 如果大小超过最大阈值(容量*负载因子),则进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
元素位置是通过 i = (n - 1) & hash
来计算的, n
为数组的长度, hash
是通过 hash(key)
方法产生的。
hash(key)
方法通过将 key 的 hashcode 与该 hashcode 的高 16 位按位异或,获得新的 hash。使用这种方法产生 hash 是为了充分利用 hashcode,减少冲突的发生。因为数组长度为 2^n,直接使用 hashcode % n 计算元素位置会导致只是利用到 hashcode 的低 n 位,而 hashcode 有 32 位,这样容易发生碰撞。
同时 hash(key)
方法同时表明了,如果存在 key 为 null,则会放在下标为 0 的桶上。
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
当 n 位 2^n 时, hash % n = hash & (n -1)
,而且位运算的效率要比求余运算要快。
该方法主要做了:
- 判断数组是否为空,为空则进行扩容。
- 元素位置在数组中是否为空,为空则直接插进去。
- 不为空的话,说明已经存在值。判断该值的 key 与要插入的 key 是否相等,相等则覆盖值。
- 不相等的话,判断是否为红黑树,是的话,插入红黑树中。
- 不是红黑树的话,遍历链表,如果已经存在 key,则覆盖。否则,在链尾插入值。如果链表长度超过 8 ,则将链表转化为红黑树。
- 如果扩容后容量超过阈值 threshold,则进行扩容。
resize()方法
该方法用于扩容。
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
//如果已经进行初始化
if (oldCap > 0) {
//如果超过最大容量,则停止扩容
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//将新容量和新阈值分别设置为原来的两倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//如果设置了阈值,则将阈值设置为初始容量
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
// 容量和阈值都设置为默认初始值
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 新数组
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
//遍历旧数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
//将旧数组的桶置空
oldTab[j] = null;
//如果桶只存在一个元素,不存在链表,则直接设置值
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//如果为红黑树
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//对链表进行操作
else { // preserve order
//原位置链表的头尾
Node<K,V> loHead = null, loTail = null;
//新位置链表的头尾
Node<K,V> hiHead = null, hiTail = null;
//遍历旧链表的指针
Node<K,V> next;
//遍历旧链表
do {
next = e.next;
//如果新增bit位为0,则说明该节点在原位置,则将它挂到原位置的链表
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
///如果新增bit位为1,则说明该节点在新位置,则将它挂到新位置的链表
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//最后分别将两条链表挂到所在的桶
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
//新位置为原下标+旧容量
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
HashMap1.8 使用 e.hash & oldCap
来计算元素新位置相对于旧位置所新增的比特位。因为容量为 2^n ,所以在二进制上第 n 位为 1 ,其他位为 0 ,通过元素的 hash 与容量按位与,可得到第 n 位的比特位。而元素位置的计算是通过 hash & (n -1)
来计算的,所以元素新的位置取决于新增的比特位,如果新增的比特位为 0 ,则说明元素还在原位置,如果新增比特位为 1 ,元素则在新位置(原下标+旧容量)。
例如,当旧容量为 16 时,16-1 对应的二进制 1111 ;新容量为 32 ,32-1 对应的二进制为 11111 。如果 hash 为 11001111001011110 ,则 hash & (16-1) = 1110,hash & (32-1) = 11110,刚好多了 hash & 16 = 10000。
该方法主要实现了:先设置新容量和新阈值,如果是链表,则对链表进行处理。从头开始遍历链表,把新增比特位为 0 的节点放到一个链表,为 1 的放到一个链表,再分别把这两个链表挂到原位置和新位置。这保证了链表顺序不会倒置。
HashMap1.7 与 HashMap1.8 相比,1.7 采用了遍历旧数组,获取到链表。遍历链表,重新计算元素在新数组的位置,以头插法的方式插入到链表,最后会导致了链表顺序会被倒置。
get()方法
根据 key 获取元素的值。该方法比较简单,主要是遍历红黑树或链表,根据 key 找到对应的节点,将值返回。
public V get(Object key) {
Node<K,V> e;
//如果存在该key对应的节点,则返回对应的值,否则返回null
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//如果桶的第一个节点的key相同,则直接返回该节点
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 否则遍历红黑树或链表
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//遍历链表,找到key相同的节点
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}