自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

xioayanran123的博客

技术博客

  • 博客(130)
  • 资源 (1)
  • 收藏
  • 关注

原创 相机标定详细步骤

6. 通过软件计算相机内参(焦距、主点坐标等)和外参(旋转矩阵、平移向量),以及畸变系数。5. 使用标定工具(如OpenCV、MATLAB)导入图像,识别标定板特征点。3. 将相机固定在稳定的三脚架或支架上,调整位置使标定板完全位于相机视野内。4. 在不同角度和距离下移动标定板,拍摄多组图像(至少15组)。7. 使用标定参数进行立体校正,确保图像对齐。2. 准备标定板,确保平整且特征点清晰。8. 拍摄实际场景验证标定准确性。以上就是相机标定的详细步骤。

2024-11-18 07:43:43 22

原创 感光度ISO和增益的区别?

感光度ISO衡量相机感光元件对光线的敏感程度,而增益则是控制图像信号的放大程度。ISO是曝光三要素之一,可通过调整ISO来改变相机感光能力,进而影响照片的亮度。增益则是在信号弱且不想增加曝光时间的情况下使用,但增益越大,噪点越多。在数码相机中,ISO有时也被称为增益。

2024-11-15 14:40:25 88

原创 快门速度和曝光时长和亮度

快门速度越大,曝光时长越短,亮度越暗。

2024-11-15 14:37:07 72

原创 相机的重要参数

相机的重要参数包括快门速度、光圈大小、感光度(ISO值)、焦距以及白平衡。

2024-11-15 14:25:29 70

原创 相机亮度调整那个参数?

感光度(ISO值):表示相机对光线的敏感程度。快门速度:决定光线进入相机的时间长短。光圈大小:控制光线进入相机的孔径大小。

2024-11-15 14:05:17 123

原创 GRR和CRR和cpk

• GRR代表测量系统的重复性和再现性(GaugeRepeatabilityandReproducibility),用于评估测量系统的准确性和可靠性。• CPK代表制程能力指数(ProcessCapabilityIndex),用于衡量生产过程的稳定性和能力,评估产品规格的一致性。• CRR没有统一说法,可能代表不同含义,如信用风险等级、备付金率、完全缓解率等,具体需根据上下文判断。希望这样的回答能满足你的需求哦!

2024-11-14 22:59:47 146

原创 公差和误差

比如说,我们制造一个零件,规定它的尺寸应该是10厘米,允许的公差范围是±0.1厘米。那么,只要这个零件的尺寸在9.9厘米到10.1厘米之间,都是合格的。但是,如果我们测量出来它的实际尺寸是9.8厘米或者10.2厘米,那就超出了公差范围,这就是误差啦。公差其实就像是一个标准,它规定了在某个范围内,尺寸或者测量值可以变动的最大和最小极限。它就像是一个“容错区间”,告诉我们在这个区间内的变动都是可以接受的。而误差呢,就是实际测量值或者实际尺寸与真值或者规定尺寸之间的差异啦。

2024-11-14 22:51:15 107

原创 世外桃源山庄

这些建议有没有让你心动呢?当然啦,这只是其中的一部分选择,你还可以根据自己的喜好和山庄的特点来创造更多有趣的名字哦!3. 翠绿山庄:强调了山庄周围环境的绿意盎然,生机勃勃,非常适合喜欢大自然的朋友。6. 古韵山庄:充满了古色古香的气息,可能是一个有着悠久历史和文化底蕴的地方。2. 静谧山庄:给人一种宁静、安详的感觉,仿佛是一个远离尘嚣的世外桃源。4. 雅致山庄:突出了山庄的优雅和品味,可能是一个充满艺术气息的地方。5. 悠然山庄:让人联想到悠闲自在的生活,是一个放松身心的好去处。

2024-11-13 17:35:11 178

原创 深度学习和图像处理

由于不同层的特征具有不同的特点和优势,低层特征分辨率更高,包含更多位置、细节信息;通过融合这些不同层的特征,可以取其长处,提高模型的性能。特征融合的方式有很多种,比如早融合(在特征融合后再进行预测)和晚融合(在部分融合的层上就开始进行检测,最终将多个检测结果进行融合)。SIFT是一种非常经典的图像处理算法,由DavidLowe在1999年提出,用于检测和描述图像中的局部特征。高维特征通常指的是在深度学习模型的深层网络中提取的特征,这些特征具有更强的语义信息,但分辨率较低,对细节的感知能力较差。

2024-11-13 16:00:27 1068

原创 深度学习transformer

它是一个基于自注意力的序列到序列模型,最初由Vaswani等人在2017年提出,主要用于解决自然语言处理(NLP)领域的任务,比如机器翻译、文本生成这些。总的来说,Transformer具有高效的并行计算能力、强大的表示能力和适应长序列数据等优点,在NLP、计算机视觉等多个领域都展现出了卓越的性能。Transformer还有位置编码这个巧妙的设计,因为模型本身不包含循环或卷积结构,无法直接获取序列中元素的顺序信息,所以通过位置编码来为序列中的每个元素添加位置信息。

2024-11-13 13:41:47 269

原创 YoloV3环境配置

首先呢,YoloV3的环境配置会因为操作系统和具体需求的不同而有所差异,但大体上都会包括一些基本的步骤。另外啊,我还想提醒你一下,配置YoloV3环境的过程中,一定要注意数据的下载和整理哦。因为YoloV3的训练和测试都需要用到大量的数据集,如果数据集没有下载完整或者路径没有设置正确,那可能会导致训练或测试失败呢。不过呢,无论哪种系统,配置YoloV3环境的核心都是要确保所有的依赖库都安装正确,并且版本要兼容哦。听了我的介绍,你是不是对YoloV3的环境配置有了更清晰的认识了呢?我会尽力帮你解答的!

2024-11-13 13:40:33 181

原创 图像处理技术霍夫变换

想象一下,如果你有一张图片,上面有很多点,这些点其实构成了一条直线,但是你看不出来,因为它们是离散的。它会把这些点在图像空间中的坐标转换到参数空间中,然后在参数空间里进行“投票”,看哪些点的投票数最多。简单来说,霍夫变换就像是一个“翻译官”,它能够在图像空间和参数空间之间进行转换,从而帮助我们找到图像中的特定形状,比如直线、圆形等。比如,在条形码扫描、验证和识别中,霍夫变换就可以帮助我们快速准确地找到条形码中的直线和矩形等特征;怎么样,听了我的介绍,你是不是对霍夫变换有了更深入的了解了呢?

2024-11-13 12:43:19 184

原创 图像处理技术卡尔曼滤波

一般形式为 x_k = Ax_{k-1} + Bu_k + w_k,其中 x_k 表示系统在时刻 k 的状态向量,A 是状态转移矩阵,B 是控制输入矩阵,u_k 是控制输入向量,w_k 是过程噪声向量。一般形式为 z_k = Hx_k + v_k,其中 z_k 表示在时刻 k 的观测向量,H 是观测矩阵,v_k 是观测噪声向量。2. 更新步骤:利用当前时刻的观测值和观测方程,对预测步骤得到的状态估计值进行更新,得到当前时刻的最优状态估计值。2. 最优性:在线性高斯假设下,卡尔曼滤波给出了状态的最优估计。

2024-11-13 12:40:34 331

原创 匈牙利算法

1. 二分图:若能将无向图G的顶点V划分为两个交集为空的顶点集,并且任意边的两个端点都分属于两个集合,则称图G为一个二分图。5. 增广路:若P是图G中一条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径。2. 找出一条增广路径P,通过异或操作(即将已匹配的边变成未匹配的边,未匹配的边变成已匹配的边)获得更大的匹配,代替M。4. 完美匹配:如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完美匹配,也称作完备匹配。

2024-11-13 12:39:04 222

原创 模板匹配和模式识别

模板匹配是一种最原始、最基本的模式识别方法哦。模板匹配研究某一特定对象物的图案位于图像的什么地方,进而识别对象物。而模式识别则是用计算机实现人对各种事物或现象的分析、描述、判断、识别。

2024-11-13 12:37:50 216

原创 halcon拉普拉斯算子

说到拉普拉斯-高斯(LaplaceofGaussian,简称LOG)算子,它可是结合了高斯滤波和拉普拉斯算子的优点哦。在Halcon里,你只需提供输入图像、输出图像和平滑系数(Sigma),就能轻松调用这个算子啦。它是个二阶微分算子,能算出像素周围灰度值的差异,然后告诉我们边缘在哪里,方向是啥。这个算子特别灵活,你可以调模板类型、平滑参数,还有尺度参数,来满足不同的检测需求。对了,选择合适的Sigma值很关键哦,它决定了高斯滤波的程度。你提到了我擅长的领域呢,让我来给你讲讲Halcon中的拉普拉斯算子吧!

2024-11-12 06:39:12 187

原创 拉普拉斯定理

拉普拉斯定理就是他在1773年从范德孟规则推广提出的,后来在1812年由柯西加以证明的。拉普拉斯定理,亦称行列式按k行展开定理,是计算降阶行列式的一种方法。简单来说,在n阶行列式D中,你可以任意取定k行(列),然后计算由这k行(列)的元素所构成的一切k阶子式与其代数余子式的乘积的和,这个和就等于行列式D的值哦。它为计算零元素个数较多的行列式、证明分块矩阵的乘法定理、证明行列式的相乘规则提供了理论基础呢。怎么样,关于线性代数中的拉普拉斯定理,你是不是有了更深入的了解啦?

2024-11-12 06:37:18 139

原创 机器学习先验知识

它与经验知识不同,经验知识则是人们通过感官直接获得的,是基于直接经验得出的经验性知识。先验知识是人类的文化传承的产物,是人们在长期的文化传承和学习中积累的,具有抽象性;18世纪德国哲学家康德指出,虽然我们的一切认知是从经验开始的,但这并不意味着认知是从经验中产生的,先验知识是可能经验的基础,它为理解感官经验提供了必要的条件。先验知识(PrioriKnowledge),简单地说,就是先于经验的知识,也就是在进行某项研究、分析或决策之前已经掌握的知识或信息。怎么样,关于先验知识,你是不是有了更深入的了解了呢?

2024-11-12 06:33:51 215

原创 C#画图板代码

这种方法对于简单的绘图应用是可行的,但它并不是最佳实践,因为它会导致闪烁和性能问题,并且绘制的图形在窗体大小调整或最小化后不会保留。对于更复杂的绘图应用,建议使用双缓冲技术,并在窗体的Paint事件中绘制图形。此外,你还可以考虑将绘制的图形保存在一个集合中,以便在窗体重新绘制时能够恢复它们。下面是一个简单的C#画图板示例代码,它使用WindowsForms来创建一个基本的绘图应用程序。如果没有,请添加一个,并调整其属性以匹配上述说明。2. 打开你的项目,并在Form1的设计视图中添加一个Panel控件。

2024-11-12 06:13:10 414

原创 高斯分布和正态分布

正态分布是高斯分布的一般性表述,高斯分布是正态分布的特例,两者本质上是一样的。

2024-11-12 05:51:45 73

原创 人脸识别和人脸检测技术

人脸识别则是指在已知人脸库中,识别出图像或视频中的人脸,并将其与已知人脸进行匹配,从而确定人脸的身份,它需要将检测到的人脸与已知人脸进行比较,以确定它们是否属于同一个人。人脸检测是指在图像或视频中快速准确地找到人脸的位置,并将其从背景中分离出来的技术,主要解决的是确定图像中是否存在人脸,以及人脸的位置和大小的问题。综上,人脸检测是人脸识别的前提和基础,而人脸识别则是对人脸检测结果的进一步应用和深化。人脸识别和人脸检测技术是计算机视觉领域的两个重要技术。

2024-11-12 05:41:41 111

原创 基于深度学习的猫狗识别

欠拟合则是指模型在训练集和测试集上都表现不佳的情况,这通常是由于模型复杂度不足或训练不充分导致的。每次迭代时,都会将一批图像数据输入到模型中,计算模型的输出并与真实标签进行比较,然后根据损失函数计算损失值。基于深度学习的猫狗识别是计算机视觉领域中的一个经典问题,它主要利用深度学习技术来训练和构建模型,以便能够自动区分和识别图像中的猫和狗。通过不断优化模型架构和训练策略,我们可以进一步提高模型的识别准确性和鲁棒性,为实际应用提供更好的支持。在构建模型时,还需要选择合适的损失函数和优化器来训练模型。

2024-11-12 05:38:40 908

原创 C#复制粘贴代码的示例

不过,由于“复制粘贴”操作本身主要是用户与文本编辑器或IDE(如VisualStudio)之间的交互,而不是C#代码逻辑的一部分,我将提供一个简单的C#代码示例,并说明如何在该代码内部或之间复制和粘贴代码段。• 使用Ctrl+V粘贴,并修改新方法的名称(例如,改为DisplayModifiedMessage)和/或其逻辑。• 命名空间:如果目标文件位于不同的命名空间中,你需要调整方法的命名空间或添加适当的using语句。// 新方法:显示修改后的消息(通过复制并修改原始方法得到)// 原始方法:显示消息。

2024-11-12 05:10:18 404

原创 C#界面设计

C#界面设计通常指的是使用C#编程语言及其相关的图形用户界面(GUI)框架(如Windows Forms、WPF(Windows Presentation Foundation)或Uno Platform等)来创建应用程序的用户界面。WPF:WPF是微软推出的新一代GUI框架,提供了更丰富的界面设计功能和更高的性能。双向数据绑定:界面上的控件不仅显示数据源中的数据,还允许用户修改,并自动将修改后的数据同步回数据源。固定布局:控件的位置和大小是固定的,不会随着窗口大小的改变而改变。

2024-11-12 05:04:10 958

原创 GRR测量系统的重复性和再现性

通过GRR分析,可以确定测量系统是否能够满足特定的精度要求,从而采取相应的改进措施,提高产品质量和生产过程的稳定性。• 再现性(Reproducibility):不同测量人员使用相同的测量设备,在相同条件下对同一测量对象进行测量所得结果的一致性。可能的改进措施包括优化测量设备、提高测量人员的技能水平、改善测量环境等。综上所述,GRR是衡量测量系统性能的重要指标,通过GRR分析可以评估测量系统的准确性和可靠性,并采取相应的改进措施以提高产品质量和生产过程的稳定性。2. 选择合适的测量设备和测量人员。

2024-11-12 04:59:18 223

原创 爱普生机器人EPSON RC

爱普生机器人Epson RC系列,搭配其专用的Epson RC+编程语言和软件环境,为用户提供了一个直观且功能强大的机器人控制和编程解决方案。总的来说,爱普生机器人及其专用的Epson RC+编程语言和软件环境,为用户提供了一个高效、直观、功能强大的机器人控制和编程解决方案,满足了不同行业和应用场景下的需求。控制器:爱普生机器人配备了先进的控制器,如RC700-E控制器,内置安全板卡,支持OPC UA通信,具有更广的通信范围和更高的性能。多语言支持:除了英文,还支持中文等其他语言,便于全球范围内的使用。

2024-11-12 04:55:40 444

原创 图像处理技术高斯噪声

这种噪声在时域和频域上都具有连续谱的特点,即其功率谱密度在所有频率上都是均匀分布的,因此也被称为白噪声。其中,高斯滤波是一种基于高斯函数的滤波方法,能够有效地去除高斯噪声,同时保留图像的细节信息。在数字图像处理中,高斯噪声是一种常见的噪声类型。高斯噪声会使图像变得模糊,降低图像质量,影响图像的后续处理和分析。高斯噪声的幅度分布符合高斯分布,这意味着噪声的幅度值在某个均值附近波动,并且极端值出现的概率较小。总之,高斯噪声是一种重要的噪声类型,在通信、图像处理等领域中都有广泛的应用。

2024-11-12 04:51:48 207

原创 图像处理技术椒盐噪声

中值滤波通过用一个像素周围的邻域所有像素的中位数替换掉该像素值来抑制噪声,能够很好地保留图像细节。它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)。这些白点和黑点会在图像中随机分布,导致图像中的细节和特征丧失,从而降低图像质量。例如,失效的感应器可能导致像素值为最小值(黑点),而饱和的感应器则可能导致像素值为最大值(白点)。总的来说,椒盐噪声是图像处理中需要重视和解决的问题之一,选择合适的去噪算法对于提高图像质量和后续处理的准确性至关重要。

2024-11-11 20:04:48 396

原创 高斯滤波中值滤波和均值滤波

中值滤波是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值,能有效抑制噪声并保护信号边缘。均值滤波是典型的线性滤波算法,用模板中全体像素的平均值来代替原来像素值,但在去噪的同时可能会破坏图像细节,使图像变得模糊。高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,通过对整幅图像进行加权平均来实现。

2024-11-11 20:01:03 278

原创 滤波器详细介绍

滤波器是一种用于信号处理的工具,能够选择性地传递或抑制特定频率的信号。它主要分为无源滤波器和有源滤波器两大类,由电阻、电容、电感等元件组成。滤波器在通信、音频处理、图像处理等领域有广泛应用,用于信号调理、频率选择、抑制杂散等,以保证信号质量。

2024-11-11 19:59:07 283

原创 先进先出和先进后出

先进先出(FIFO):数据按进入队列的顺序排列,先进入的数据先被处理或移出,类似于排队买票,先排队的人先买到票。先进后出(LIFO):数据最后进入栈的反而最先被处理或移出,类似于叠放的书本,最后放上去的书最先被拿下来。

2024-11-11 19:55:49 102

原创 卷积核参数详细介绍

6. 输入输出通道数:输入通道数由输入矩阵的通道数决定,输出通道数由卷积核的输出通道数(即卷积层的深度,或使用了多少个filters)决定。4. 步长(Stride):步长是指卷积核在输入数据上移动的距离,较大的步长会导致输出矩阵尺寸缩小,而较小的步长会保留更多的细节。5. 填充(Padding):在输入数据的边缘进行填充,确保卷积核在输入数据的边缘也能进行有效的运算,用来保持输出矩阵的大小。2. 尺寸:卷积核通常是一个小矩阵,如3x3、5x5等,定义了卷积的大小范围,在网络中代表感受野的大小。

2024-11-11 19:52:59 298

原创 switch多分支选择语句

2. break语句:在case分支的末尾使用break语句可以防止程序“贯穿”(fallthrough)到下一个case分支。如果不使用break,程序会继续执行下一个case分支(或default分支)的代码,直到遇到break或switch语句的末尾。switch选择语句是一种多分支选择结构,它允许程序根据一个表达式的值选择执行多个代码块中的一个。3. default分支:default分支是可选的,它提供了一个默认的行为,当expression的值不匹配任何case分支时执行。

2024-11-11 19:47:53 372

原创 卷积核详细介绍

4. 卷积操作:将卷积核在输入数据上滑动,计算每个位置的乘积和,得到一个新的输出值,这个值代表了卷积核在当前位置的特征响应。5. 应用:广泛应用于图像识别、自然语言处理、语音识别等领域,是卷积神经网络的核心组成部分。卷积核是一种二维矩阵(或高维矩阵),用于图像处理和计算机视觉中的特征提取。2. 作用:通过与输入数据进行卷积运算,提取出图像中的边缘、纹理等特征。• 可学习性:在卷积神经网络中,卷积核的数值是通过训练过程学习得到的。• 局部性:卷积核只关注输入数据的一个局部区域。以上是卷积核的详细介绍。

2024-11-11 19:46:34 98

原创 卷积核里面的数字表示什么意思?

卷积核的大小(即矩阵的维度)和数量(即卷积层中卷积核的数量)也是网络设计的重要参数。较小的卷积核通常能够捕捉更局部的特征,而较大的卷积核则能够捕捉更全局的特征。多个卷积核的组合可以提取出更加复杂的特征,并通过卷积层的堆叠来构建深层次的特征表示,从而实现对输入数据的准确分类、识别或其他任务。当卷积核在输入数据上滑动时,它会将自身每个位置的数字与输入数据对应位置的数值相乘,然后将所有乘积相加,得到一个新的数值。卷积核里面的数字表示的是一种权重,这些权重在与输入数据进行卷积操作时起着至关重要的作用。

2024-11-11 19:36:54 202

原创 C#中 layout的用法

• 在Xamarin.Forms和UnoPlatform等跨平台UI框架中,布局也是通过特定的布局容器来实现的,如StackLayout、Grid、AbsoluteLayout等。• 虽然这与UI布局不直接相关,但在EntityFrameworkCore中,你可以通过FluentAPI或数据注释来配置模型的布局(如索引、关系、列名等)。在WPF、UWP(UniversalWindowsPlatform)等框架中,你可以使用XAML来定义复杂的布局结构,包括嵌套布局容器和控件。

2024-11-11 19:24:06 573

原创 vector和docker的区别?

Docker通过将应用程序及其所有依赖项打包到一个轻量级的、可移植的容器中,从而实现了应用程序在不同环境中的一致性和隔离性。此外,Docker还提供了丰富的功能和工具,比如服务发现、负载均衡、资源隔离和弹性扩展等,这些功能使得Docker在微服务架构和云计算环境中得到了广泛的应用。而且,vector提供了丰富的接口函数,比如push_back()用于在末尾添加元素,pop_back()用于删除末尾的元素,以及size()用于获取当前元素的数量等等。让我来帮你梳理一下它们的区别吧。

2024-11-11 19:20:45 705

原创 C#中break和continue的区别?

• 在for循环中,continue会导致跳过循环体中continue之后的语句,并直接跳到更新表达式(通常是i++)和条件判断部分。• 在while和do-while循环中,continue会导致跳过循环体中continue之后的语句,并直接回到条件判断部分。• 剩下的奇数(1、3、7、9)中,只有1和3被打印出来,因为7和9在i等于5之后,而循环已经在i等于5时终止了。在C#编程语言中,break和continue是两个用于控制循环流程的关键字,但它们的作用和用途有所不同。continue关键字。

2024-11-11 19:01:07 332

原创 图像处理自动渲染代码

以下是一个简化的Python示例代码,使用了OpenCV库进行图像处理,以及一个假设的render_function来模拟渲染过程(实际上,渲染过程可能涉及更复杂的图形学库,如OpenGL、DirectX或专门的渲染引擎)。如果你需要进行更复杂的渲染,比如三维模型的渲染,你可能需要使用专门的图形学库,如OpenGL、DirectX,或者基于这些库的渲染引擎,如Unity、UnrealEngine等。请注意,由于具体的渲染需求可能差异很大,以下代码仅提供一个框架性的示例,并不包含实际的渲染逻辑。

2024-11-11 17:55:14 380

原创 机器视觉相机标定的具体步骤

5. 计算内部参数,使用已知的特征点和相机的初始参数计算焦距、主点位置和畸变系数等。6. 计算外部参数,使用已知的特征点和相机的内部参数计算相机在空间中的位置和方向。8. 验证标定结果,将标定后的相机应用于实际场景中,观察成像效果是否达到预期。2. 收集标定数据,拍摄不同角度、不同方向的标定板图像。3. 初始相机参数估计,对相机的内参和外参进行初步估计。4. 提取特征点,在图像中使用算法提取出特定的特征点。7. 优化参数,使用优化算法对计算得到的参数进行优化。以上就是机器视觉相机标定的具体步骤。

2024-11-11 16:16:18 263

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除