自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(44)
  • 收藏
  • 关注

原创 Constrained Probabilistic Mask Learning for Task-specific Undersampled MRI Reconstruction

【代码】Constrained Probabilistic Mask Learning for Task-specific Undersampled MRI Reconstruction。

2024-05-13 21:45:49 568

原创 UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown

【代码】UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown。

2023-10-03 13:12:36 6300 4

原创 install GitHub Desktop on ubuntu

【代码】install GitHub Desktop on ubuntu。

2023-09-28 23:59:01 1026

原创 UNet笔记

import ostask_name = 'Task114_heart_MNMs'raw_data_base_path="/home/ilkay/Documents/ruru/nnUNet/ocmr_task114/nnUNet_raw"preprocessed_path="/home/ilkay/Documents/ruru/nnUNet/ocmr_task114/nnUNet_preprocessed"result_folder_path="/home/ilkay/Documents/ruru

2022-04-07 01:33:27 581

原创 进展---一些笔记

把OCMR的fs的shape写进csv文件import numpy as npimport mathfrom ismrmrdtools import transformimport ocmr_unet.read_ocmr as readimport osfiles = sorted(list(pathlib.Path('/home/ilkay/Documents/ruru/pg_mri/datasets/ocmr/train/').iterdir()))out_list = []for f

2022-03-15 14:00:12 564

原创 SeqMRI train process

SeqMRI train processLOUPE大体流程train的过程从初始化mask到得到zero-filled imagereconstruction过程怎么得到masksequential网络LOUPE大体流程LOUPE( (samplers): ModuleList( (0): LOUPESampler( (gen_mask): LineConstrainedProbMask() ) ) (reconstructor): LOUPEUNet(

2021-11-12 19:25:48 866 3

原创 DL-HW

DL homeworkHW0linear_regression:HW0linear_regression:https://www.cs.toronto.edu/~frossard/post/linear_regression/

2021-10-19 15:25:05 231

原创 c1_greedy_policy_processing

def get_policy_probs(model, recons, mask): #mask(3,1,1,256,1) recons(3,1,256,256) channel_size = mask.shape[1] #1 res = mask.size(-2) #256 recons = recons.view(mask.size(0) * channel_size, 1, res, res) #(3,1,256,256) # Obtain policy model

2021-10-01 07:49:31 126

原创 可视化代码

可视化代码real转complexcomplex转realdpireal转complexdef real2complex(x): x = x[:,0] + (1j * x[:,1]) return xcomplex转realdef complex2real(x): ''' Parameter --------- x: ndarray assumes at least 2d. Last 2D axes are split in te

2021-08-30 03:48:51 1033

原创 pg_mri----OCMR policy network

before policy network作为initialstep0经过policy network输出变量output是(1,255),然后排出中间的白条,取其余的最大值位置第145。因为8个trajectories,这里复制出了8个channel得到(8,256),每个都是(255,255),所以8个相同的mask_kspacestep1这里actions = policy.sample()tensor([[144, 144, 146, 144, 144, 146, 144, 146]].

2021-08-30 03:48:14 318

原创 pg_mri----brain policy network

train_policy.pyCreate data loadertest_loader = create_data_loader()test_data_range_dict = create_data_range_dict()do_and_log_evaluation一直往mask中加竖线,for循环16遍step=0step=1step=2,3......15循环完所有batch计算ssim和psnrCreate data loadertest_loader = create_data_loader

2021-08-27 13:49:02 235

原创 pg_mri----brain reconstruction

train-reconstructiontrain_loader = create_data_loader(args, 'train', shuffle=True)dev_loader = create_data_loader(args, 'val')display_loader = create_data_loader(args, 'val', display=True)scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_step_

2021-08-21 14:42:19 451

原创 我遇到的疑惑及解惑

我遇到的疑惑及解惑Why Zero-padding值得反复看的视频fft, ifft, fftshift,ifftshiftWhy Zero-paddingZero-padding methods to improve the DFT值得反复看的视频MRI Image Parameters and OptimizationActive MR k-space Sampling with Reinforcement Learning https://arxiv.org/abs/2007.10469

2021-08-17 13:43:37 300

原创 cascade MRI reconstruction:evaluate

if draw: pred = pred[0] grnd = grnd[0] err = np.abs(pred - grnd) ** 2 err -= err.min() err /= err.max() err *= 255 err = err.astype(np.uint8) err = cv2.applyColorMap(err, 2) plt.imsave(os.path.join(kwargs['output_path'],

2021-08-02 21:42:09 376

原创 model.load_state_dict(state_dict)报错问题

看一下训练得到的模型参数 state_dict = torch.load('logs/sanity_3/checkpoint', map_location='cuda' if args['train']['cuda'] else 'cpu') state_dict = state_dict['model']看一下参数for k,v in state_dict.items(): print(k)输出:module.block.0.layers.0.weightmodul.

2021-07-31 13:17:29 20400

原创 MSE & PSNR & SSIM

PSNR & SSIMcascade MRI reconstruction: PSNRbase_psnrtest_psnrsummarycascade MRI reconstruction: SSIMUnderstanding Regression - Mean Squared Error / LossIn Part 1 of this video, calculation of MSE is explained and in the following Part 2 of the vide

2021-07-31 09:33:58 323

原创 cascade MRI reconstruction:loss function

MSELOSS大体流程手动计算粗略手动计算调torchstep by step手动计算用numpysummary总结数据集值扩大1000倍大体流程用了10个.mat,让train为6个,test为4个,batch_size=2loss = criterion(output['image'], batch['full'])执行loss跳到这里再跳到这里再跳到这里再跳到这里跳到这里执行上面的return语句时跳到这里然后return结束返回到原位置跳回到原来的

2021-07-30 17:12:46 336

原创 iTerm2

iTerm2Oh My ZshThemeszsh Auto SuggestionsSyntax HighlightingWord JumpsChange the username@hostname终端运行.ipynbexport https_proxy=http://127.0.0.1:7890 http_proxy=http://127.0.0.1:7890 all_proxy=socks5://127.0.0.1:789Oh My Zshhttps://ohmyz.shInstall with

2021-07-29 12:55:40 205

原创 2021-07-26科研进展

The words in blue are the knowledge points involved in the presentationIn preprocessing stage:First, the original data is preprocessed using zero-paddingThen the fully sampled original data is accelerated to obtain the undersampled dataIn order to per.

2021-07-26 17:47:51 526

原创 Parallel MRI

Contents4.1 Introduction4.2 Parallel Imaging as an Inverse Problem .4.2.1Forward Model ………4.2.2Image Reconstruction ………4.2.3Regularization……4.2.4Discretization………………4.2.5Numerical Optimization …4.3 Autocalibration ……4.3.1 Nonlinear Inverse Reconstruction .

2021-07-24 19:30:22 216

原创 Compressed Sensing in Quantitative MRI

Contents3.1 Introduction3.2 Principles of Compressed Sensing3.3 Generalized Formalism for an MR Parameter Mapping Model-Based: Reconstruction3.3.1 Sampling Pattern Consideration for Model-Based Reconstruction3.3.2 Model-Based Sparsity Constraint3.3.3 Apply

2021-07-24 18:34:53 149

原创 Data Driven Methods for MRI Reconstruction

Code: JuliaIntroductionHistoryscopeMeasurement modelbrief review of classic methodsOrdinary least-squaresSmooth regularizationSparsity regularizers:Basicsparsity models:synthesis formProximal methodssparsity regularizers:AdvancedNon- SENSE methodsGRAPPA /

2021-07-21 22:02:58 1170 2

原创 cascade MRI reconstruction: train.py--3

output = model(batch)class CascadeNetwork(nn.Module): def forward(self, x): return self.block(x)batch=x#第一个ResnetBlockclass ResnetBlock(nn.Module): def forward(self, x): residual = x['image'] out = self.layers(x['image

2021-07-15 01:35:13 223

原创 pytorch - connection between loss.backward() and optimizer.step()

Some answers explained well, but I’d like to give a specific example to explain the mechanism.Suppose we have a function : z = 3 x^2 + y^3.The updating gradient formula of z w.r.t x and y is:initial values are x=1 and y=2.x = torch.tensor([1.0], req

2021-07-14 19:01:36 142

原创 k-space相关

k-space相关Zero-fillingZero-fillingProcessing of MRI data is usually performed in an array processor using the Fast Fourier Transform (FFT) algorithm. These computational requirements generally require the input data to be in a matrix whose dimensions are

2021-07-13 14:34:18 907 4

原创 cascade MRI reconstruction: cartesian_mask--2

def cartesian_mask(self, shape): N, Nx, Ny = int(np.prod(shape[:-2])), shape[-2], shape[-1] pdf_x = normal_pdf(Nx, 0.5/(Nx/10.)**2) # shape:256pdf_x.reshape(16,16)lmda = Nx/(2.*self.acc) # 32n_lines = int(Nx / self.acc) # 64# ad...

2021-07-12 15:47:37 375

原创 cascade MRI reconstruction: dataset.py--1

首先配置文件不能少config.yaml# Model Parametersnetwork: num_cascades: 6 num_layers: 5 # Number of layers in the CNN per cascade num_filters: 64 kernel_size: 3 stride: 1 padding: 1 #A padding of 1 is needed to keep t

2021-07-11 16:58:38 450

原创 HW1_ML---Data Wrangling with pandas

每个代表几个sample,一列代表一个feature有三行sample: 1, 2, 3。有三个feature:a, b, c

2021-03-26 17:24:03 123

原创 2021-3-22科研进展

对于FastMRI数据集Kneepath = r'/Volumes/exterD/codeTemp/pg_mri/datasets_knee/singlecoil_train/file1000026.h5'target = h5py.File(path, 'r')['reconstruction_esc']Output:<HDF5 dataset "reconstruction_esc": shape (30, 320, 320), type "<f4">The invers

2021-03-21 21:22:57 299

原创 2021-3-8科研进展

2021-03-14 12:49:05 135

原创 2021-2-22论文Experimental design for MRI by greedy policy search解读

**下面这是我的2021-2-22 presentation**ContentsPart 0----Basic theoryPart 1-----NetworkPart 2-----Policy gradients and reinforcement learningPart 3-----MRI subsamplingPart 4-----MethodPart 0----Basic theory下面的图:The central part of a filtering m...

2021-03-14 12:29:46 201

原创 MRI数据集分析

MRI数据集分析Fast MRI数据集Knee MRI数据集分析5个items一一show出来Brain MRI数据集分析三个itemsAWS OCMR数据集分析Fast MRI数据集if you would like to download the files, you will need to submit a request on https://fastmri.med.nyu.edu:Knee MRI数据集分析path = r'/Volumes/exterD/codeTemp/pg_mri

2021-03-14 11:53:35 3716 5

原创 IEEE paper写作总结LaTeX格式

最近写了篇IEEE paper,被LaTeX折磨的死去活来总算完工,下面把我用到的LaTeX语法做个笔记,以后肯定也会用到https://github.com/xr0927/chapter10-IEEE-paper-LaTeX-format感觉有用的话顺便给个star⭐⭐...

2019-10-07 22:09:24 682

原创 比赛总结------津南数字制造算法挑战赛——赛场二:物流货物限制品监测

比赛总结------津南数字制造算法挑战赛——赛场二:物流货物限制品监测求star⭐⭐????????https://github.com/xr0927/project5–Monitoring-of-restricted-goods-in-logistics...

2019-10-02 07:51:40 937 7

原创 比赛总结-----------华为云人工智能大赛·垃圾分类挑战杯

比赛总结求star⭐⭐????????https://github.com/xr0927/project4–Garbage-sorting

2019-10-01 20:57:26 1717

原创 我会不定期翻译一些CVPR等等视觉方面的论文,不定期更新上传到这里

我会不定期翻译一些论文,不定期更新上传到这里https://github.com/xr0927/chapter8-translate-papers已翻译完:1.CNN-based Cascaded Multi-task Learning of High-level Prior and Density Estimation for Crowd Counting-----------------...

2019-07-03 15:42:29 310

原创 CNN-based Cascaded Multi-task Learning of High-level Prior and Density Estimation for Crowd Counting

crowdcount-cascaded一步步跟我学训练和测试https://github.com/xr0927/chapter7-Learning-Cascaded-pytorch顺便给美女个star哦star⭐⭐

2019-07-03 06:17:59 261

原创 跟我一步步学CSRNet训练和测试

https://github.com/xr0927/chapter5-learning_CSRNet给美女个star哦⭐⭐

2019-07-03 06:14:20 2873 14

原创 CVPR2019-Context-Aware_Crowd_Counting论文解读

CVPR2019一篇关于基于上下文感知的人群计数,训练和测试都已经跑通,我就顺便写了一篇博客,以代码的形式对网络架构进行了剖析https://github.com/xr0927/chapter9-learnCVPR2019-Context-Aware_Crowd_Counting顺便给美女个star哦star⭐...

2019-07-03 06:10:25 2235 2

原创 CondaHTTPError HTTP 404 NOT FOUND for url

CondaHTTPError: HTTP 404 NOT FOUND for url <https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/noarch/删除原来镜像源conda config --remove-key channels重新添加镜像源conda config --add channels https://mirrors....

2019-05-01 10:55:42 990

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除